Publications by authors named "Sarah J Turner"

Speciation is often driven by selective processes like those associated with viability, mate choice, or local adaptation, and "speciation genes" have been identified in many eukaryotic lineages. In contrast, neutral processes are rarely considered as the primary drivers of speciation, especially over short evolutionary timeframes. Here, we describe a rapid vertebrate speciation event driven primarily by genetic drift.

View Article and Find Full Text PDF
Article Synopsis
  • Chinese hamster ovary (CHO) cells are crucial for producing monoclonal antibodies and other complex biotherapeutics using metabolic selection marker technologies like glutamine synthetase (GS) and dihydrofolate reductase (DHFR).
  • A new selection marker system based on CHO cells' need for proline was developed using pyrroline-5-carboxylase synthetase (P5CS), which allowed engineered cells to thrive in proline-free conditions, comparable to standard CHO cell growth in proline-rich environments.
  • By combining the P5CS and GS selection systems, researchers successfully created CHO cell lines that improved recombinant protein expression, leading to higher yields of a challenging monoclonal antibody during production.
View Article and Find Full Text PDF