Publications by authors named "Sarah J Quillin"

It is now established that the gut microbiome influences human neurology and behavior, and vice versa. Distinct mechanisms underlying this bidirectional communication pathway, termed the gut-brain axis, are becoming increasingly uncovered. This review summarizes recent interkingdom signaling research focused on gamma-aminobutyric acid (GABA), a human neurotransmitter and ubiquitous signaling molecule found in bacteria, fungi, plants, invertebrates, and mammals.

View Article and Find Full Text PDF

Neisseria gonorrhoeae mounts a substantial transcriptional program in response to hydrogen peroxide (HP), a prominent reactive oxygen species (ROS) encountered during infection. We tested which strain FA1090 genes show differential transcript abundance in response to sublethal amounts of HP to differentiate HP-responsive signaling from widespread cellular death and dysregulation. RNA sequencing (RNA-Seq) revealed that 150 genes were significantly upregulated and 143 genes downregulated following HP exposure.

View Article and Find Full Text PDF

The host-adapted human pathogen Neisseria gonorrhoeae is the causative agent of gonorrhoea. Consistent with its proposed evolution from an ancestral commensal bacterium, N. gonorrhoeae has retained features that are common in commensals, but it has also developed unique features that are crucial to its pathogenesis.

View Article and Find Full Text PDF

Animal epithelial tissue becomes reproducibly colonized by specific environmental bacteria. The bacteria (microbiota) perform critical functions for the host's tissue development, immune system development, and nutrition; yet the processes by which bacterial diversity in the environment is selected to assemble the correct communities in the host are unclear. To understand the molecular determinants of microbiota selection, we examined colonization of a simplified model in which the light organ of Euprymna scolopes squid is colonized exclusively by Vibrio fischeri bacteria.

View Article and Find Full Text PDF

Many pathogens regulate or modify their immune-stimulating ligands to avoid detection by their infected hosts. Listeria monocytogenes, a facultative intracellular bacterial pathogen, interacts with multiple components of mammalian innate immunity during its infection cycle. During replication within the cytosol of infected cells, L.

View Article and Find Full Text PDF

Mammalian bile has potent anti-microbial activity, yet bacterial pathogens of the gastrointestinal tract and hepatobiliary system nonetheless persist and replicate within bile-rich environments. Listeria monocytogenes, a Gram-positive pathogen, encounters bile at three stages throughout its infectious cycle in vivo: in the gut during initial infection, in the liver where it replicates robustly and in the gallbladder, from which it can return to the intestine and thence to the environment. The mechanisms by which L.

View Article and Find Full Text PDF