Background: The lateral segregation of Ras proteins into transient plasma membrane nanoclusters is essential for high-fidelity signal transmission by the Ras mitogen-activated protein kinase (MAPK) cascade. In this spatially constrained signaling system, the dynamics of Ras nanocluster assembly and disassembly control MAPK signal output.
Results: We show here that BRaf inhibitors paradoxically activate CRaf and MAPK signaling in Ras transformed cells by profoundly dysregulating Ras nanocluster dynamics.
Ras proteins on the inner leaflet of the plasma membrane signal from transient nanoscale proteolipid assemblies called nanoclusters. Interactions between the Ras lipid anchors and plasma membrane phospholipids, cholesterol, and actin cytoskeleton contribute to the formation, stability, and dynamics of Ras nanoclusters. Many small biological molecules are amphiphilic and capable of intercalating into membranes and altering lipid immiscibility.
View Article and Find Full Text PDFThe nonsteroidal anti-inflammatory drug indomethacin exhibits diverse biological effects, many of which have no clear molecular mechanism. Membrane-bound receptors and enzymes are sensitive to their phospholipid microenvironment. Amphipathic indomethacin could therefore potentially modulate cell signaling by changing membrane properties.
View Article and Find Full Text PDFH-Ras is a binary switch that is activated by multiple co-factors and triggers several key cellular pathways one of which is MAPK. The specificity and magnitude of downstream activation is achieved by the spatio-temporal organization of the active H-Ras in the plasma membrane. Upon activation, the GTP bound H-Ras binds to Galectin-1 (Gal-1) and becomes transiently immobilized in short-lived nanoclusters on the plasma membrane from which the signal is propagated to Raf.
View Article and Find Full Text PDFK-Ras functions as a critical node in the mitogen-activated protein kinase (MAPK) pathway that regulates key cellular functions including proliferation, differentiation, and apoptosis. Following growth factor receptor activation K-Ras.GTP forms nanoclusters on the plasma membrane through interaction with the scaffold protein galectin-3.
View Article and Find Full Text PDFSignal transduction is regulated by the lateral segregation of proteins into nanodomains on the plasma membrane. However, the molecular mechanisms that regulate the lateral segregation of cell surface receptors, such as receptor tyrosine kinases, upon ligand binding are unresolved. Here we used high-resolution spatial mapping to investigate the plasma membrane nanoscale organization of the epidermal growth factor (EGF) receptor (EGFR).
View Article and Find Full Text PDFThe Ras/Raf/MEK/ERK (MAPK) pathway directs multiple cell fate decisions within a single cell. How different system outputs are generated is unknown. Here we explore whether activating the MAPK module from different membrane environments can rewire system output.
View Article and Find Full Text PDFThe spatial organization of K-Ras proteins into nanoclusters on the plasma membrane is essential for high-fidelity signal transduction. The mechanism underlying K-Ras nanoclustering is unknown. We show here that K-Ras.
View Article and Find Full Text PDFThe organization of Ras proteins into plasma membrane nanoclusters is essential for high-fidelity signal transmission, but whether the nanoscale environments of different Ras nanoclusters regulate effector interactions is unknown. We show using high-resolution spatial mapping that Raf-1 is recruited to and retained in K-Ras-GTP nanoclusters. In contrast, Raf-1 recruited to the plasma membrane by H-Ras is not retained in H-Ras-GTP nanoclusters.
View Article and Find Full Text PDFThe organization of Ras proteins into nanoclusters on the inner plasma membrane is essential for Ras signal transduction, but the mechanisms that drive nanoclustering are unknown. Here we show that epidermal growth factor receptor activation stimulates the formation of H-Ras.GTP-Galectin-1 (Gal-1) complexes on the plasma membrane that are then assembled into transient nanoclusters.
View Article and Find Full Text PDFThe homeobox transcription factor Mtx2 is essential for epiboly, the first morphogenetic movement of gastrulation in zebrafish. Morpholino knockdown of Mtx2 results in stalling of epiboly and lysis due to yolk rupture. However, the mechanism of Mtx2 action is unknown.
View Article and Find Full Text PDFTo examine the roles of endogenous K-ras 4A and K-ras 4B splice variants in tumorigenesis, murine lung carcinogenesis was induced by N-methyl-N-nitrosourea (MNU), which causes a K-ras mutation (G12D) that jointly affects both isoforms. Compared with age-matched K-ras(tmDelta4A/-) mice (where tumours can express mutationally activated K-ras 4B only), tumour number and size were significantly higher in K-ras(+/-) mice (where tumours can also express mutationally activated K-ras 4A), and significantly lower in K-ras(tmDelta4A/tmDelta4A) mice (where tumours can express both wild-type and activated K-ras 4B). MNU induced significantly more, and larger, tumours in wild-type than K-ras(tmDelta4A/tmDelta4A) mice which differ in that only tumours in wild-type mice can express wild-type and activated K-ras 4A.
View Article and Find Full Text PDFGlycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) are present at the surface of living cells in cholesterol dependent nanoscale clusters. These clusters appear to act as sorting signals for the selective endocytosis of GPI-APs via a Cdc42-regulated, dynamin and clathrin-independent pinocytic pathway called the GPI-AP-enriched early endosomal compartments (GEECs) pathway. Here we show that endocytosis via the GEECs pathway is inhibited by mild depletion of cholesterol, perturbation of actin polymerization or overexpression of the Cdc42/Rac-interactive-binding (CRIB) motif of neural Wiskott-Aldrich syndrome protein (N-WASP).
View Article and Find Full Text PDFRas proteins function as molecular switches in signal transduction pathways, and, here, we examined the effects of the K-ras4A and 4B splice variants on cell function by comparing wild-type embryonic stem (ES) cells with K-ras(tmDelta4A/tmDelta4A) (exon 4A knock-out) ES cells which express K-ras4B only and K-ras(-/-) (exons 1-3 knock-out) ES cells which express neither splice variant, and intestinal epithelium from wild-type and K-ras(tmDelta4A/tmDelta4A) mice. RT-qPCR analysis found that K-ras4B expression was reduced in K-ras(tmDelta4A/tmDelta4A) ES cells but unaffected in small intestine. K-Ras deficiency did not affect ES cell growth, and K-Ras4A deficiency did not affect intestinal epithelial proliferation.
View Article and Find Full Text PDFPlasma membrane compartmentalization imposes lateral segregation on membrane proteins that is important for regulating signal transduction. We use computational modeling of immunogold spatial point patterns on intact plasma membrane sheets to test different models of inner plasma membrane organization. We find compartmentalization at the nanoscale level but show that a classical raft model of preexisting stable domains into which lipid raft proteins partition is incompatible with the spatial point patterns generated by the immunogold labeling of a palmitoylated raft marker protein.
View Article and Find Full Text PDFIn mammals, the three classical ras genes encode four highly homologous proteins, N-Ras, H-Ras, and the isoforms K-Ras 4A and 4B. Previous studies have shown that K-ras is essential for mouse development and that while K-ras 4A and 4B are expressed during development, K-ras 4A expression is regulated temporally and spatially and occurs in adult kidney, intestine, stomach, and liver. In the present study, the pattern of K-ras 4A expression was examined in a wide range of wild-type adult mouse tissues, and gene targeting was used to generate K-ras 4A-deficient mice to examine its role in development.
View Article and Find Full Text PDFRas proteins transduce signals from membrane-bound receptors via multiple downstream effector pathways and thereby affect fundamental cellular processes, including proliferation, apoptosis, and differentiation. K-ras activating mutations play a key role in neoplastic progression and are particularly prevalent in colorectal, pancreatic, and lung cancers. The present study addressed whether the K-ras proto-oncogene displays a tumor suppressor function by comparative analysis of mouse teratomas derived from wild-type embryonic stem (ES) cells, K-ras null (K-ras(-/-)) ES cells, and K-ras(-/-) ES cells that stably reexpress either wild-type K-ras(gly12) or oncogenic K-ras(val12).
View Article and Find Full Text PDF