Publications by authors named "Sarah J Parsons"

Objective: To determine the extent of dasatinib uptake and effect on Src kinase activity in tumor, normal adjacent tissue, and blood in newly diagnosed endometrial cancer patients.

Methods: Dasatinib was dosed at 100 or 200 mg PO BID at 32 and 8 h preoperatively. Blood and tissue were collected pre-treatment and at surgery to assess active (pY419) and total Src protein (pharmacodynamics [PD]) and pharmacokinetics (PK).

View Article and Find Full Text PDF

Assembly of the mitotic spindle is essential for proper chromosome segregation during mitosis. Maintenance of spindle poles requires precise regulation of kinesin- and dynein-generated forces, and improper regulation of these forces disrupts pole integrity leading to pole fragmentation. The formation and function of the mitotic spindle are regulated by many proteins, including Aurora A kinase and the motor proteins Kif2a and Eg5.

View Article and Find Full Text PDF

Targeting of Toxoplasma gondii by autophagy is an effective mechanism by which host cells kill the protozoan. Thus, the parasite must avoid autophagic targeting to survive. Here we show that the mammalian cytoplasmic molecule Focal Adhesion Kinase (FAK) becomes activated during invasion of host cells.

View Article and Find Full Text PDF

Resistance to the EGFR tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib, often related to Ras or secondary EGFR mutations, is a relevant clinical issue in Non-Small Cell Lung Cancer (NSCLC). Although Src TK has been involved in such resistance, clinical development of its inhibitors has been so far limited. To better define the molecular targets of the Src TKIs saracatinib, dasatinib and bosutinib, we used a variety of in vitro/in vivo studies.

View Article and Find Full Text PDF

The cytokinetic furrow is organized by the RhoA GTPase, which recruits actin and myosin II to the furrow and drives contractility. Here, we show that the RhoA GTPase-activting protein (GAP) p190RhoGAP-A (also known as ARHGAP35) has a role in cytokinesis and is involved in regulating levels of RhoA-GTP and contractility. Cells depleted of p190RhoGAP-A accumulate high levels of RhoA-GTP and markers of high RhoA activity in the furrow, resulting in failure of the cytokinetic furrow to progress to abscission.

View Article and Find Full Text PDF
Article Synopsis
  • Src tyrosine kinase overactivation is linked to poor responses to HER2 inhibitors like lapatinib in breast cancer, prompting research into its role in drug resistance.
  • Studies showed that Src is more active in lapatinib-resistant breast cancer cells, and using the Src inhibitor saracatinib alongside lapatinib improved treatment effectiveness and survival in lab models.
  • Findings suggest that Src activation relies more on interactions with the epidermal growth factor receptor (EGFR) rather than HER2, indicating that combined targeting of EGFR and HER2 is essential for overcoming resistance to lapatinib.
View Article and Find Full Text PDF

Unlabelled: Using mass spectrometry, we identified p190RhoGAP (p190) as a binding partner of human papillomavirus 16 (HPV16) E7. p190 belongs to the GTPase activating protein (GAP) family and is one of the primary GAPs for RhoA. GAPs stimulate the intrinsic GTPase activity of the Rho proteins, leading to Rho inactivation and influencing numerous biological processes.

View Article and Find Full Text PDF

Background: Neuroendocrine (NE) cells promote the progression of prostate cancer to a castration-resistant state through the production of paracrine growth factors. We have demonstrated this principle using in vitro and in vivo proliferative endpoints; however, the contributions of NE-derived pro-survival factors and anti-apoptosis to this phenomenon have not been thoroughly investigated.

Methods: Here, we utilized conditioned-medium (CM) from LNCaP cells, engineered to undergo NE differentiation, and examined its effects on PC3 and LNCaP cell survival.

View Article and Find Full Text PDF

Objective: Estrogen treatment limits the cytotoxic effects of chemotherapy in estrogen receptor-positive (ER+) breast cancer cell lines, suggesting that estrogen pathway signaling may confer chemotherapeutic resistance. This study investigates the molecular responses of ER+ breast cancer cell lines to the chemotherapeutic agent, doxorubicin, in the presence or absence of estrogen.

Methods: ER+ MCF-7 and T47-D cells were cultured in hormone-starved or estrogen-containing media with or without doxorubicin at concentrations mimicking the low concentrations seen in plasma and tumor microenvironments in humans following typical bolus administration.

View Article and Find Full Text PDF

Radiotherapy combined with androgen depletion is generally successful for treating locally advanced prostate cancer. However, radioresistance that contributes to recurrence remains a major therapeutic problem in many patients. In this study, we define the high-affinity neurotensin receptor 1 (NTR1) as a tractable new molecular target to radiosensitize prostate cancers.

View Article and Find Full Text PDF

p190RhoGAP (p190) is a negative regulator of RhoGTPases and a putative tumor suppressor, whose mechanism of tumor suppression is poorly defined. Ectopic expression of p190 induces various morphological phenotypes, including multinucleation, dendrite-like formation, and chromatin condensation, suggesting an involvement in apoptosis. We examined the possibility that p190 can function as a tumor suppressor by regulating induction of apoptosis.

View Article and Find Full Text PDF

Objective: To determine whether the combination of vorinostat (suberoylanilide hydroxamic acid, SAHA) and paclitaxel is more effective than either individual agent and to evaluate the effect of drug sequencing in ovarian cancer cell lines and in mouse models.

Methods: For in vitro studies, three ovarian cancer cell lines (2774, SKOV-3 and OVCAR-3) were grown with either 10 nM paclitaxel, or vorinostat (0.3, 1, 3 or 10 μM), or vehicle (DMSO) and subsequently treated with 10 nM paclitaxel, or vorinostat (0.

View Article and Find Full Text PDF

In this issue of Cancer Cell, Carretero and colleagues report that Src and FAK signaling pathways are activated in lung cancers when the tumor suppressor LKB1 is deleted. These findings suggest the use of unique combinatorial therapies for treatment of lung cancers.

View Article and Find Full Text PDF

p190RhoGAP-A (p190) is a GTPase-activating protein known to regulate actin cytoskeleton dynamics by decreasing RhoGTP levels through activation of Rho intrinsic GTPase activity. We have previously shown that p190 protein levels are cell cycle-regulated, decreasing in mitosis, and that this decrease is mediated by the ubiquitin-proteasome pathway. In addition, overexpression of p190 results in decreased RhoGTP levels at the cleavage furrow during cytokinesis, p190 and the RhoGEF Ect2 play opposing roles in cytokinesis, and sustained levels of p190 in mitosis are associated with cytokinesis failure, all findings that suggest but do not directly demonstrate that completion of cytokinesis is dependent on reduced levels of p190.

View Article and Find Full Text PDF

Co-overexpression of the epidermal growth factor (EGF) receptor (EGFR) and c-Src frequently occurs in human tumors and is linked to enhanced tumor growth. In experimental systems this synergistic growth requires EGF-dependent association of c-Src with the EGFR and phosphorylation of Tyr-845 of the receptor by c-Src. A search for signaling mediators of Tyr(P)-845 revealed that mitochondrial cytochrome c oxidase subunit II (CoxII) binds EGFR in a Tyr(P)-845- and EGF-dependent manner.

View Article and Find Full Text PDF

During progression to an androgen-independent state following androgen ablation therapy, prostate cancer cells continue to express the androgen receptor (AR) and androgen-regulated genes, indicating that AR is critical for the proliferation of hormone-refractory prostate cancer cells. Multiple mechanisms have been proposed for the development of AR-dependent hormone-refractory disease, including changes in expression of AR coregulatory proteins, AR mutation, growth factor-mediated activation of AR, and AR protein up-regulation. The most prominent of these progressive changes is the up-regulation of AR that occurs in >90% of prostate cancers.

View Article and Find Full Text PDF

Previous studies demonstrated that p190RhoGAP (p190) negatively affects cytokinesis in a RhoGAP-dependent manner, suggesting that regulation of Rho may be a critical mechanism of p190 action during cytokinesis. P190 localizes to the cleavage furrow (CF) of dividing cells, and its levels decrease during late mitosis by an ubiquitin-mediated mechanism, consistent with the hypothesis that high RhoGTP levels are required for completion of cytokinesis. To determine whether RhoGTP levels in the CF are affected by p190 and to define the phase(s) of cytokinesis in which p190 is involved, we used FRET analysis alone or in combination with time-lapse microscopy.

View Article and Find Full Text PDF
Article Synopsis
  • Radiation therapy is a common treatment for localized prostate cancer, but 10-60% of patients still face tumor recurrence, with the reasons largely unclear.
  • The research indicates that radiation treatment can cause prostate cancer cells to differentiate into neuroendocrine-like cells, which are linked to worse outcomes and resistance to therapies.
  • Two specific transcription factors, CREB and ATF2, play opposing roles in this differentiation process, and resistant cancer cell clones can survive radiation treatment and chemotherapy, potentially leading to tumor recurrence.
View Article and Find Full Text PDF

Evidence suggests that p190RhoGAP (p190), a GTPase activating protein (GAP) specific for Rho, plays a role in cytokinesis. First, ectopic expression of p190 induces a multinucleated cellular phenotype. Second, endogenous p190 localizes to the cleavage furrow of dividing cells.

View Article and Find Full Text PDF

Correlative analyses of tumors and patient-derived cell lines of the human reproductive system suggest that overexpression of EGF contributes to the oncogenic phenotype. However, it is unclear at what stage in disease overexpression of the EGFR is most critical. To assess its role as an initiator of reproductive tissue tumor development, transgenic mice were derived with mouse mammary tumor virus (MMTV)-regulated overexpression of the human EGFR.

View Article and Find Full Text PDF

The neuroendocrine status of prostatic adenocarcinomas is considered a prognostic indicator for development of aggressive, androgen-independent disease. Neuroendocrine-like cells are thought to function by providing growth and survival signals to surrounding tumor cells, particularly following androgen ablation therapy. To test this hypothesis directly, LNCaP cells were engineered to inducibly express a constitutively activated form of the cyclic AMP-dependent protein kinase A catalytic subunit (caPKA), which was previously found upon transient transfection to be sufficient for acquisition of neuroendocrine-like characteristics and loss of mitotic activity.

View Article and Find Full Text PDF

High expression of the adaptor molecule Cas has been linked to resistance to the antiestrogen tamoxifen, both in tissue culture and in human tumors. The aim of this study was to elucidate the mechanism(s) by which overexpression of Cas confers resistance to tamoxifen. Cas overexpression in MCF-7 breast cancer cells was shown to alleviate both tamoxifen-mediated growth inhibition and induction of apoptosis.

View Article and Find Full Text PDF

Signaling networks play important roles in cancer progression. For example, overexpression of the epidermal growth factor receptor (EGFR) is a poor prognostic indicator in multiple tumor types. Recent studies have postulated that the EGFR functions as a central conduit for signaling by different classes of cell surface receptors.

View Article and Find Full Text PDF

Breast cancer cell growth may be stimulated by 17beta-estradiol (E2) or growth factors like epidermal growth factor (EGF). However, tumors typically depend on only one of these pathways and may overexpress either estrogen receptor (ER) or EGF receptor (EGFR) and related family members. Tumors overexpressing EGFR are more aggressive than those expressing ER.

View Article and Find Full Text PDF

The urokinase-type plasminogen activator (uPA) receptor (uPAR) functions in concert with co-receptors, including integrins, FPR-like receptor-1/lipoxin A4 receptor, and the epidermal growth factor receptor (EGFR), to initiate cell signaling. uPAR co-receptors may be dynamically organized into a multiprotein signaling receptor complex. In Chinese hamster ovary-K1 (CHO-K1) cells, uPA-binding to uPAR activates ERK/MAP kinase, even though these cells do not express the EGFR; however, when CHO-K1 cells are transfected to express the EGFR, ERK activation becomes EGFR-dependent.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session4ae86lq98hkptr8qcutsro7vjemchbn8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once