Publications by authors named "Sarah J Nicholas"

Neural mechanisms of lower urinary tract symptoms in obstruction-induced bladder overactivity remain unclear. We made the first single unit recordings from different types of spinal afferents to determine the effects of bladder outlet obstruction in guinea pigs. A model of gradual bladder outlet obstruction in male guinea pigs was used to produce overactive bladder.

View Article and Find Full Text PDF

Recent studies have shown that endogenous serotonin is not required for colonic peristalsis in vitro, nor gastrointestinal (GI) transit in vivo. However, antagonists of 5-Hydroxytryptamine (5-HT) receptors can inhibit peristalsis and GI-transit in mammals, including humans. This raises the question of how these antagonists inhibit GI-motility and transit, if depletion of endogenous 5-HT does not cause any significant inhibitory changes to either GI-motility or transit? We investigated the mechanism by which 5-HT3 and 5-HT4 antagonists inhibit distension-evoked peristaltic contractions in guinea-pig distal colon.

View Article and Find Full Text PDF

The functional role of the different classes of visceral afferents that innervate the large intestine is poorly understood. Recent evidence suggests that low-threshold, wide-dynamic-range rectal afferents play an important role in the detection and transmission of visceral pain induced by noxious colorectal distension in mice. However, it is not clear which classes of spinal afferents are activated during naturally occurring colonic motor patterns or during intense contractions of the gut smooth muscle.

View Article and Find Full Text PDF

The patterns of motor activity that exist in isolated full-length human colon have not been described. Our aim was to characterize the spontaneous motor patterns in isolated human colon and determine whether these patterns are different in whole colons obtained from patients with slow-transit constipation (STC). The entire colon (excluding the anus), was removed from patients with confirmed STC and mounted longitudinally in an organ bath ∼120 cm in length, containing oxygenated Krebs' solution at 36°C.

View Article and Find Full Text PDF

The mechanisms underlying distension-evoked peristalsis in the colon are incompletely understood. It is well known that, following colonic distension, 5-hydroxytryptamine (5-HT) is released from enterochromaffin (EC) cells in the intestinal mucosa. It is also known that exogenous 5-HT can stimulate peristalsis.

View Article and Find Full Text PDF