A major challenge in evolutionary biology is explaining how populations navigate rugged fitness landscapes without getting trapped on local optima. One idea illustrated by adaptive dynamics theory is that as populations adapt, their newly enhanced capacities to exploit resources alter fitness payoffs and restructure the landscape in ways that promote speciation by opening new adaptive pathways. While there have been indirect tests of this theory, to our knowledge none have measured how fitness landscapes deform during adaptation, or test whether these shifts promote diversification.
View Article and Find Full Text PDFA major challenge in evolutionary biology is explaining how populations navigate rugged fitness landscapes without getting trapped on local optima. One idea illustrated by adaptive dynamics theory is that as populations adapt, their newly enhanced capacities to exploit resources alter fitness payoffs and restructure the landscape in ways that promote speciation by opening new adaptive pathways. While there have been indirect tests of this theory, none have measured how fitness landscapes deform during adaptation, or test whether these shifts promote diversification.
View Article and Find Full Text PDFPrions are misfolded proteins that accumulate within the brain in association with a rare group of fatal and infectious neurological disorders in humans and animals. A current challenge to research is a lack of model systems that are compatible with a wide range of prion strains, reproduce prion toxicity, and are amenable to genetic manipulations. In an attempt to address this need, here we produced stable cell lines that overexpress different versions of PrP through lentiviral transduction of immortalized human neural progenitor cells (ReN VM).
View Article and Find Full Text PDFPrion diseases are neurodegenerative disorders with long asymptomatic incubation periods, followed by a rapid progression of cognitive and functional decline culminating in death. The complexity of intercellular interactions in the brain is challenging to unravel and the basis of disease pathobiology remains poorly understood. In this study, we employed single cell RNA sequencing (scRNAseq) to produce an atlas of 147,536 single cell transcriptomes from cortex and hippocampus of mice infected with prions and showing clinical signs.
View Article and Find Full Text PDFThe numerous neurological syndromes associated with COVID-19 implicate an effect of viral pathogenesis on neuronal function, yet reports of direct SARS-CoV-2 infection in the brain are conflicting. We used a well-established organotypic brain slice culture to determine the permissivity of hamster brain tissues to SARS-CoV-2 infection. We found levels of live virus waned after inoculation and observed no evidence of cell-to-cell spread, indicating that SARS-CoV-2 infection was non-productive.
View Article and Find Full Text PDFProgressive dysfunction and loss of neurons ultimately culminates in the symptoms and eventual fatality of prion disease, yet the pathways and mechanisms that lead to neuronal degeneration remain elusive. Here, we used RNAseq to profile transcriptional changes in microdissected CA1 and thalamus brain tissues from prion infected mice. Numerous transcripts were altered during clinical disease, whereas very few transcripts were reliably altered at pre-clinical time points.
View Article and Find Full Text PDFViruses and their hosts can undergo coevolutionary arms races where hosts evolve increased resistance and viruses evolve counter-resistance. Given these arms race dynamics (ARD), both players are predicted to evolve along a single trajectory as more recently evolved genotypes replace their predecessors. By coupling phenotypic and genomic analyses of coevolving populations of bacteriophage λ and Escherichia coli, we find conflicting evidence for ARD.
View Article and Find Full Text PDFCrimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus that can cause a hemorrhagic fever in humans, with a case fatality rate of up to 40%. Cases of CCHFV have been reported in Africa, Asia, and southern Europe; and recently, due to the expanding range of its vector, autochthonous cases have been reported in Spain. Although it was discovered over 70 years ago, our understanding of the pathogenesis of this virus remains limited.
View Article and Find Full Text PDFBreast cancer brain metastases (BCBMs) have been underinvestigated despite their high incidence and poor outcome. MicroRNAs (miRNAs), and particularly circulating miRNAs, regulate multiple cellular functions, and their deregulation has been reported in different types of cancer and metastasis. However, their signature in plasma along brain metastasis development and their relevant targets remain undetermined.
View Article and Find Full Text PDFAn important driver of evolution in viruses is natural selection to optimize the use of their hosts' genetic network. To learn how viruses respond to this pressure, we disrupted the genetic network of Escherichia coli to inhibit replication of its virus, bacteriophage lambda, and then observed how λ evolved to compensate. We deleted E.
View Article and Find Full Text PDFChronic wasting disease (CWD) is an emerging infectious prion disorder that is spreading rapidly in wild populations of cervids in North America. The risk of zoonotic transmission of CWD is as yet unclear but a high priority must be to minimize further spread of the disease. No simple diagnostic tests are available to detect CWD quickly or in live animals; therefore, easily accessible biomarkers may be useful in identifying infected animals.
View Article and Find Full Text PDFMultiple cell types and complex connection networks are an intrinsic feature of brain tissue. In this study we used expression profiling of specific microscopic regions of heterogeneous tissue sections isolated by laser capture microdissection (LCM) to determine insights into the molecular basis of brain pathology in prion disease. Temporal profiles in two mouse models of prion disease, bovine spongiform encephalopathy (BSE) and a mouse-adapted strain of scrapie (RML) were performed in microdissected regions of the CA1 hippocampus and granular layer of the cerebellum which are both enriched in neuronal cell bodies.
View Article and Find Full Text PDFGene therapy for the treatment of genetic disorders has demonstrated considerable therapeutic success in clinical trials. Among the most effective and commonly used gene delivery vectors are those based on adeno-associated virus (AAV). Despite these advances in clinical gene therapy, further improvements in AAV vector properties such as rapid intracellular processing and transgene expression, targeted transduction of therapeutically relevant cell types, and longevity of transgene expression, will render extension of such successes to many other human diseases.
View Article and Find Full Text PDFEvolutionary innovations are often achieved by repurposing existing genes to perform new functions; however, the mechanisms enabling the transition from old to new remain controversial. We identified mutations in bacteriophage λ's host-recognition gene that confer enhanced adsorption to λ's native receptor, LamB, and the ability to access a new receptor, OmpF. The mutations destabilize λ particles and cause conformational bistability of J, which yields progeny of multiple phenotypic forms, each proficient at different receptors.
View Article and Find Full Text PDFThe Zika virus (ZIKV) epidemic is an ongoing public health concern. ZIKV is a flavivirus reported to be associated with microcephaly, and recent work in animal models demonstrates the ability of the virus to cross the placenta and affect fetal brain development. Recent findings suggest that the virus preferentially infects neural stem cells and thereby deregulates gene expression, cell cycle progression, and increases cell death.
View Article and Find Full Text PDFUnderstanding the conditions that allow speciation to occur is difficult because most research has focused on either long-lived organisms or asexual microorganisms. We propagated bacteriophage λ, a virus with rapid generations and frequent recombination, on two Escherichia coli host genotypes that expressed either the LamB or OmpF receptor. When supplied with either single host (allopatry), phage λ improved its binding to the available receptor while losing its ability to use the alternative.
View Article and Find Full Text PDFThe involvement of SNPs in miRNA target sites remains poorly investigated in neurodegenerative disease. In addition to associations with disease risk, such genetic variations can also provide novel insight into mechanistic pathways that may be responsible for disease etiology and/or pathobiology. To identify SNPs associated specifically with degenerating neurons, we restricted our analysis to genes that are dysregulated in CA1 hippocampal neurons of mice during early, preclinical phase of Prion disease.
View Article and Find Full Text PDFPrion diseases typically have long pre-clinical incubation periods during which time the infectious prion particle and infectivity steadily propagate in the brain. Abnormal neuritic sprouting and synaptic deficits are apparent during pre-clinical disease, however, gross neuronal loss is not detected until the onset of the clinical phase. The molecular events that accompany early neuronal damage and ultimately conclude with neuronal death remain obscure.
View Article and Find Full Text PDFThis study was conducted to compare the ability of two potential microdialysis perfusates to enhance the recovery of SB-265123, a lipophilic, highly protein-bound compound, both in vitro and in vivo. Initial in vitro experiments established that the recovery of SB-265123 by microdialysis using normal saline as a perfusate was poor (1.7%).
View Article and Find Full Text PDF