In genetic cardiomyopathies, a frequently described phenomenon is how similar mutations in one protein can lead to discrete clinical phenotypes. One example is illustrated by two mutations in beta myosin heavy chain (β-MHC) that are linked to hypertrophic cardiomyopathy (HCM) (Ile467Val, I467V) and left ventricular non-compaction (LVNC) (Ile467Thr, I467T). To investigate how these missense mutations lead to independent diseases, we studied the molecular effects of each mutation using recombinant human β-MHC Subfragment 1 (S1) in assays.
View Article and Find Full Text PDFVariants in >12 genes encoding sarcomeric proteins can cause various cardiomyopathies. The two most common are hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Current therapeutics do not target the root causes of these diseases, but attempt to prevent disease progression and/or to manage symptoms.
View Article and Find Full Text PDFBackground: Although the genetic causes of hypertrophic cardiomyopathy (HCM) are widely recognized, considerable lag in the development of targeted therapeutics has limited interventions to symptom palliation. This is in part attributable to an incomplete understanding of how point mutations trigger pathogenic remodeling. As a further complication, similar mutations within sarcomeric genes can result in differential disease severity, highlighting the need to understand the mechanism of progression at the molecular level.
View Article and Find Full Text PDFThis article focuses on three "bins" that comprise sets of biophysical derangements elicited by cardiomyopathy-associated mutations in the myofilament. Current therapies focus on symptom palliation and do not address the disease at its core. We and others have proposed that a more nuanced classification could lead to direct interventions based on early dysregulation changing the trajectory of disease progression in the preclinical cohort.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2016
Calcium binding and dissociation within the cardiac thin filament (CTF) is a fundamental regulator of normal contraction and relaxation. Although the disruption of this complex, allosterically mediated process has long been implicated in human disease, the precise atomic-level mechanisms remain opaque, greatly hampering the development of novel targeted therapies. To address this question, we used a fully atomistic CTF model to test both Ca(2+) binding strength and the energy required to remove Ca(2+) from the N-lobe binding site in WT and mutant troponin complexes that have been linked to genetic cardiomyopathies.
View Article and Find Full Text PDF