The study of non-natural biocatalytic transformations relies heavily on empirical methods, such as directed evolution, for identifying improved variants. Although exceptionally effective, this approach provides limited insight into the molecular mechanisms behind the transformations and necessitates multiple protein engineering campaigns for new reactants. To address this limitation, we disclose a strategy to explore the biocatalytic reaction space and garner insight into the molecular mechanisms driving enzymatic transformations.
View Article and Find Full Text PDFRibosomally synthesized post-translationally modified peptides (RiPPs) are ubiquitous and represent a structurally diverse class of natural products. The ribosomally encoded precursor polypeptides are often extensively modified post-translationally by enzymes that are encoded by coclustered genes. Radical -adenosyl-l-methionine (SAM) enzymes catalyze numerous chemically challenging transformations.
View Article and Find Full Text PDFMethylammonium lead halide perovskite-based solar cells have demonstrated efficiencies as high as 24.2 %, highlighting their potential as inexpensive and solution-processable alternatives to silicon solar cell technologies. Poor stability towards moisture, ultraviolet irradiation, heat, and a bias voltage of the perovskite layer and its various device interfaces limits the commercial feasibility of this material for outdoor applications.
View Article and Find Full Text PDF