Inbreeding depression plays a fundamental role in evolution. To help detect and characterize the loci that underlie inbreeding depression, we used bud pollination and salt treatments to circumvent self-incompatibility (SI) in plants from populations of Leavenworthia alabamica and produced families of progeny that were then genotyped at genetically mapped single-nucleotide polymorphism (SNP) loci. Using Bayesian inference, the segregation patterns for each SNP were used to explore support for different dominance and selection coefficients at linked viability loci in different genomic regions.
View Article and Find Full Text PDFThe extent to which inbreeding depression can be purged is a major determinant of mating system evolution and is important to conservation and crop improvement. Studies of inbreeding depression purging have not been conducted in self-incompatible plants before. An experimental ('ancestral') treatment was first created from self-incompatible plants of Leavenworthia alabamica.
View Article and Find Full Text PDFSelf-incompatibility (SI) promotes outcrossing, but transitions to self-compatibility (SC) are frequent. Population genetic theory describing the breakdown of SI to SC suggests that, under most conditions, populations should be composed of either SI or SC individuals. Under a narrow range of conditions, theory suggests that SI may persist alongside reduced expression of SI (pseudo-SI, PSI) in mixed-mating populations.
View Article and Find Full Text PDFPremise Of The Study: The depiction of polyploid speciation as instantaneous implies that strong prezygotic and postzygotic isolation form as a direct result of whole-genome duplication. However, the direct vs. indirect contributions of genome duplication to phenotypic divergence and prezygotic isolation are rarely quantified across multiple reproductive barriers.
View Article and Find Full Text PDFClonal reproduction is associated with the incidence of polyploidy in flowering plants. This pattern may arise through selection for increased clonality in polyploids compared to diploids to reduce mixed-ploidy mating. Here, we test whether clonal reproduction is greater in tetraploid than diploid populations of the mixed-ploidy plant, Chamerion angustifolium, through an analysis of the size and spatial distribution of clones in natural populations using AFLP genotyping and a comparison of root bud production in a greenhouse study.
View Article and Find Full Text PDFFlow cytometry has become the dominant method for estimating nuclear DNA content in plants, either for ploidy determination or quantification of absolute genome size. Current best practices for flow cytometry involve the analysis of fresh tissue, however, this imposes significant limitations on the geographic scope and taxonomic diversity of plants that can be included in large-scale genome size studies. Dried tissue has been used increasingly in recent years, but largely in the context of ploidy analysis.
View Article and Find Full Text PDFConspecific pollen precedence can be a strong reproductive barrier between polyploid and diploid species, but the role of genome multiplication in the evolution of this barrier has not been investigated. Here, we examine the direct effect of genome duplication on the evolution of pollen siring success in tetraploid Chamerion angustifolium. To separate the effects of genome duplication from selection after duplication, we compared pollen siring success of synthesized tetraploids (neotetraploids) with that of naturally occurring tetraploids by applying 2x, 4x (neo or established) or 2x + 4x pollen to diploid and tetraploid flowers.
View Article and Find Full Text PDF