Carbon capture, utilization and storage is a key yet cost-intensive technology for the fight against climate change. Single-component water-lean solvents have emerged as promising materials for post-combustion CO capture, but little is known regarding their mechanism of action. Here we present a combined experimental and modelling study of single-component water-lean solvents, and we find that CO capture is accompanied by the self-assembly of reverse-micelle-like tetrameric clusters in solution.
View Article and Find Full Text PDFEfficient direct air capture (DAC) of CO will require strategies to deal with the relatively low concentration in the atmosphere. One such strategy is to employ the combination of a CO -selective membrane coupled with a CO capture solvent acting as a draw solution. Here, the interactions between a leading water-lean carbon-capture solvent, a polyether ether ketone (PEEK)-ionene membrane, CO , and combinations were probed using advanced NMR techniques coupled with advanced simulations.
View Article and Find Full Text PDFResearch interest in single-atom catalysts (SACs) has been continuously increasing. However, the lack of understanding of the dynamic behaviors of SACs during applications hinders catalyst development and mechanistic understanding. Herein, we report on the evolution of active sites over Pd/TiO-anatase SAC (Pd/TiO) in the reverse water-gas shift (rWGS) reaction.
View Article and Find Full Text PDFThe dynamics of reactive intermediates are important in catalysis for understanding transient species, which can drive reactivity and the transport of species to reaction centers. In particular, the interplay between surface-bound carboxylic acids and carboxylates is important for numerous chemical transformations, including CO hydrogenation and ketonization. Here, we investigate the dynamics of acetic acid on anatase TiO(101) using scanning tunneling microscopy experiments and density functional theory calculations.
View Article and Find Full Text PDFIncreasing atmospheric concentrations of greenhouse gases due to industrial activity have led to concerning levels of global warming. Reducing carbon dioxide (CO) emissions, one of the main contributors to the greenhouse effect, is key to mitigating further warming and its negative effects on the planet. CO capture solvent systems are currently the only available technology deployable at scales commensurate with industrial processes.
View Article and Find Full Text PDFThe catalytic reduction in carbon dioxide is a crucial step in many chemical industrial reactions, such as methanol synthesis, the reverse water-gas shift reaction, and formic acid synthesis. Here, we investigate the role of bulk hydrogen, where hydrogen atoms are found deep inside a metal surface as opposed to subsurface ones, upon CO reduction over a Ni(110) surface using density functional theory and ab initio molecular dynamics simulations. While it has previously been shown that subsurface hydrogen stabilizes CO and can aid in overcoming reaction barriers, the role of bulk hydrogen is less studied and thus unknown with regard to CO reduction.
View Article and Find Full Text PDFWe introduce a new heterogeneous CPU+GPU-enhanced DFTB approach for the routine and efficient simulation of large chemical and biological systems. Compared to homogeneous computing with conventional CPUs, heterogeneous computing approaches exhibit substantial performance with only a modest increase in power consumption, both of which are essential to upcoming exascale computing initiatives. We show that DFTB-based molecular dynamics is a natural candidate for heterogeneous computing, since the computational bottleneck in these simulations is the diagonalization of the Hamiltonian matrix, which is performed several times during a single molecular dynamics trajectory.
View Article and Find Full Text PDFPolymer materials that are able to self-heal in humid conditions or even in water are highly desirable for their industrial applications. However, the development of underwater self-healing polymer materials is very challenging since water molecules can readily disturb traditional noncovalent bonds, such as saturate the hydrogen bonds, coordinate with the metal cation, as well as solvate the ions. Here, a new type of dipole-dipole interactions is employed as the driving force, combining with highly polar and hydrophobic fluorinated polymers, to successfully demonstrate an underwater self-healing elastomer.
View Article and Find Full Text PDFSelf-healing materials can repair damage caused by mechanical wear, thereby extending lifetime of devices. A transparent, self-healing, highly stretchable ionic conductor is presented that autonomously heals after experiencing severe mechanical damage. The design of this self-healing polymer uses ion-dipole interactions as the dynamic motif.
View Article and Find Full Text PDFContrary to recent reports, we show that the electronic properties of phosphorene nanotubes are surprisingly rich and much more complex than previously assumed. We find that all phosphorene nanotubes exhibit an intricate direct-to-indirect band gap transition as the nanotube diameter decreases, a unique property not identified in any prior studies (which claimed either direct or indirect band gaps only) that we uncover with large-scale DFT calculations. We address these previous inconsistencies by detailed analyses of orbital interactions, which reveal that the strain associated with decreasing the nanotube diameter causes a transition from a direct to an indirect band gap for all of the phosphorene nanotubes.
View Article and Find Full Text PDFUsing large-scale DFT calculations (up to 1476 atoms and 18 432 orbitals), we present the first detailed analysis on the unusual electronic properties of recently synthesized porphyrin nanotubes. We surprisingly observe extremely large oscillations in the bandgap of these nanostructures as a function of size, in contradiction to typical quantum confinement effects (i.e.
View Article and Find Full Text PDF