Background: Perihilar cholangiocarcinoma (pCCA) is characterised by poor outcomes. Early diagnosis is essential for patient survival. The peptide galanin (GAL) and its receptors GAL are expressed in various tumours.
View Article and Find Full Text PDFMultipotent stromal cells are considered attractive sources for cell therapy and tissue engineering. Despite numerous experimental and clinical studies, broad application of stromal cell therapeutics is not yet emerging. A major challenge is the functional diversity of available cell sources.
View Article and Find Full Text PDFLoose bodies (LBs) from patients with osteochondritis dissecans (OCD) are usually removed and discarded during surgical treatment of the defect. In this study, we address the question of whether these LBs contain sufficient viable and functional chondrocytes that could serve as a source for autologous chondrocyte implantation (ACI) and how the required prolonged in vitro expansion affects their phenotype. Chondrocytes were isolated from LBs of 18 patients and compared with control chondrocyte from non-weight-bearing joint regions ( = 7) and bone marrow mesenchymal stromal cells (BMSCs, = 6) obtained during primary arthroplasty.
View Article and Find Full Text PDFNanoparticles can acquire a plasma protein corona defining their biological identity. Corona functions were previously considered for cell-derived extracellular vesicles (EVs). Here we demonstrate that nano-sized EVs from therapy-grade human placental-expanded (PLX) stromal cells are surrounded by an imageable and functional protein corona when enriched with permissive technology.
View Article and Find Full Text PDFDonor variation is a prominent critical issue limiting the applicability of cell-based therapies. We hypothesized that batch effects during propagation of bone marrow stromal cells (BMSCs) in human platelet lysate (hPL), replacing fetal bovine serum (FBS), can affect phenotypic and functional variability. We therefore investigated the impact of donor variation, hPL- vs.
View Article and Find Full Text PDFPlatelet-rich plasma is a promising regenerative therapeutic with controversial efficacy. We and others have previously demonstrated regenerative functions of human platelet lysate (HPL) as an alternative platelet-derived product. Here we separated extracellular vesicles (EVs) from soluble factors of HPL to understand the mode of action during skin-organoid formation and immune modulation as model systems for tissue regeneration.
View Article and Find Full Text PDFSelf-assembly of solid organs from single cells would greatly expand applicability of regenerative medicine. Stem/progenitor cells can self-organize into micro-sized organ units, termed organoids, partially modelling tissue function and regeneration. Here we demonstrated 3D self-assembly of adult and induced pluripotent stem cell (iPSC)-derived fibroblasts, keratinocytes and endothelial progenitors into both, planar human skin in vivo and a novel type of spheroid-shaped skin organoids in vitro, under the aegis of human platelet lysate.
View Article and Find Full Text PDFSeveral protocols exist for generating megakaryocytes (MKs) and platelets from human induced pluripotent stem cells (hiPSCs) with limited efficiency. We observed previously that mesoderm induction improved endothelial and stromal differentiation. We, therefore, hypothesized that a protocol modification prior to hemogenic endothelial cell (HEC) differentiation will improve MK progenitor (MKP) production and increase platelet output.
View Article and Find Full Text PDFPooled human platelet lysate (pHPL) is increasingly used as replacement of animal serum for manufacturing of stromal cell therapeutics. Porcine heparin is commonly applied to avoid clotting of pHPL-supplemented medium but the influence of heparin on cell behavior is still unclear. Aim of this study was to investigate cellular uptake of heparin by fluoresceinamine-labeling and its impact on expression of genes, proteins and function of human stromal cells derived from bone marrow (BM), umbilical cord (UC) and white adipose tissue (WAT).
View Article and Find Full Text PDFApplication of in vitro transcribed (IVT) messenger ribonucleic acid (mRNA) is an increasingly popular strategy to transiently produce proteins as therapeutics in a tissue or organ of choice. Here, we focused on the skin and aimed to test if whole human skin tissue explant technology can be used to evaluate the expression efficacy of different IVT Interferon alpha (IFN-α) mRNA constructs in situ, after biolistic delivery. Skin explants were viable and intact for at least five days based on histologic analysis and TUNEL staining.
View Article and Find Full Text PDFIntravascular transplantation of tissue factor (TF)-bearing cells elicits an instant blood-mediated inflammatory reaction (IBMIR) resulting in thrombotic complications and reduced engraftment. Here we studied the hemocompatibility of commonly used human white adipose tissue (WAT), umbilical cord (UC) and bone marrow stromal cells (BMSC) and devised a possible strategy for safe and efficient stromal cell transplantation. Stromal cell identity, purity, and TF expression was tested by RTQ-PCR, flow cytometry and immunohistochemistry.
View Article and Find Full Text PDFDue to its unique immunological properties, the skin is an attractive target tissue for allergen-specific immunotherapy. In our current work, we combined a dendritic cell targeting approach with epicutaneous immunization using an ablative fractional laser to generate defined micropores in the upper layers of the skin. By coupling the major birch pollen allergen Bet v 1 to mannan from S.
View Article and Find Full Text PDFLight-induced lesions are a powerful tool to study the amazing ability of photoreceptors to regenerate in the adult zebrafish retina. However, the specificity of the lesion towards photoreceptors or regional differences within the retina are still incompletely understood. We therefore characterized the process of degeneration and regeneration in an established paradigm, using intense white light from a fluorescence lamp on swimming fish (diffuse light lesion).
View Article and Find Full Text PDFFibroblast growth factors (Fgf) are secreted signaling molecules that have mitogenic, patterning, neurotrophic and angiogenic properties. Their importance during embryonic development in patterning and morphogenesis of the vertebrate eye is well known, but less is known about the role of Fgfs in the adult vertebrate retina. To address Fgf function in adult retina, we determined the spatial distribution of components of the Fgf signaling pathway in the adult zebrafish retina.
View Article and Find Full Text PDFAdult telencephalic neurogenesis is a conserved trait of all vertebrates studied. It has been investigated in detail in rodents, but very little is known about the composition of neurogenic niches and the cellular nature of progenitors in nonmammalian vertebrates. To understand the components of the progenitor zones in the adult zebrafish telencephalon and the link between glial characteristics and progenitor state, we examined whether canonical glial markers are colocalized with proliferation markers.
View Article and Find Full Text PDFInduction of the otic placode involves a number of regulatory interactions. Early studies revealed that the induction of this program is initiated by instructive signals from the mesendoderm as well as from the adjacent hindbrain. Further investigations on the molecular level identified in zebrafish Fgf3, Fgf8, Foxi1, Pax8, Dlx3b and Dlx4b genes as key players during the induction phase.
View Article and Find Full Text PDF