The transthyretin-like protein (TLP) from Salmonella enterica subspecies I is a periplasmic protein with high level structural similarity to a protein found in mammals and fish. In humans, the protein homologue, transthyretin, binds and carries retinol and thyroxine, and a series of other, unrelated aromatic compounds. Here we show that the amino acid sequence of the TLP from different species, subspecies and serovars of the Salmonella genus is highly conserved and demonstrate that the TLP gene is constitutively expressed in S.
View Article and Find Full Text PDFObjective: Polycystic ovary syndrome (PCOS) is associated with sympathetic nervous system activation, insulin resistance, and blood pressure elevation. Renal nerve ablation has been demonstrated to reduce sympathetic outflow and improve blood pressure control. Here we report on the effects of renal denervation on hemodynamic, metabolic, and renal parameters in two obese PCOS patients with hypertension.
View Article and Find Full Text PDFWith the notable exception of humans, uric acid is degraded to (S)-allantoin in a biochemical pathway catalyzed by urate oxidase, 5-hydroxyisourate (HIU) hydrolase, and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase in most vertebrate species. A point mutation in the gene encoding mouse HIU hydrolase, Urah, that perturbed uric acid metabolism within the liver was discovered during a mutagenesis screen in mice. The predicted substitution of cysteine for tyrosine in a conserved helical region of the mutant-encoded HIU hydrolase resulted in undetectable protein expression.
View Article and Find Full Text PDFThe structure of the thyroid hormone distributor protein, transthyretin, has been highly conserved during the evolution of vertebrates. Over the last decade, studies into the evolution of transthyretin have revealed the existence of a transthyretin homolog, transthyretin-like protein, in all kingdoms. Phylogenetic studies have suggested that the transthyretin gene in fact arose as a result of a duplication of the transthyretin-like protein gene in early protochordate evolution.
View Article and Find Full Text PDFThe potential involvement of sympathetic overactivity has been neglected in this population despite accumulating experimental and clinical evidence suggesting a crucial role of sympathetic activation for both progression of renal failure and the high rate of cardiovascular events in patients with chronic kidney disease. The contribution of sympathetic neural mechanisms to the occurrence of cardiac arrhythmias, the development of hypertension, and the progression of heart failure are well established; however, the exact mechanisms contributing to heightened sympathetic tone in patients with chronic kidney disease are unclear. This review analyses potential mechanisms underlying sympathetic activation in chronic kidney disease, the range of adverse consequences associated with this activation, and potential therapeutic implications resulting from this relationship.
View Article and Find Full Text PDFThe mechanism of binding of thyroid hormones by the transport protein transthyretin (TTR) in vertebrates is structurally well characterised. However, a homologous family of transthyretin-like proteins (TLPs) present in bacteria as well as eukaryotes do not bind thyroid hormones, instead they are postulated to perform a role in the purine degradation pathway and function as 5-hydroxyisourate hydrolases. Here we describe the 2.
View Article and Find Full Text PDFTransthyretin (TTR) is a tetrameric protein involved in the distribution of thyroid hormones in vertebrates. The amino acid sequence of TTR is highly conserved across vertebrates. Hypothetical TTR-like proteins (TLPs) were inferred from the identification of genes in nonvertebrate species.
View Article and Find Full Text PDFTransthyretin (TTR) is an extracellular thyroid hormone distributor protein in vertebrates, whose structure has been highly conserved between fish and humans. However, the ligand preferentially bound by TTR has changed during evolution from 3',3,5-L-triiodothyronine (T3) to 3',5',3,5-l-tetraiodothyronine (T4). We identified genes in the genomes of >50 species of nonvertebrates, which could code for TTR-like proteins.
View Article and Find Full Text PDF