Publications by authors named "Sarah Head"

Alternative splicing is crucial for cancer progression and can be targeted pharmacologically, yet identifying driver exons genome-wide remains challenging. We propose identifying such exons by associating statistically gene-level cancer dependencies from knockdown viability screens with splicing profiles and gene expression. Our models predict the effects of splicing perturbations on cell proliferation from transcriptomic data, enabling in silico RNA screening and prioritizing targets for splicing-based therapies.

View Article and Find Full Text PDF

Immune checkpoint inhibitors block the interaction between a receptor on one cell and its ligand on another cell, thus preventing the transduction of an immunosuppressive signal. While inhibition of the receptor-ligand interaction is key to the pharmacological activity of these drugs, it can be technically challenging to measure these intercellular interactions directly. Instead, target engagement (or receptor occupancy) is commonly measured, but may not always be an accurate predictor of receptor-ligand inhibition, and can be misleading when used to inform clinical dose projections for this class of drugs.

View Article and Find Full Text PDF

ZJ-101, a structurally simplified analog of marine natural product superstolide A, was previously designed and synthesized in our laboratory. In the present study four new analogs of ZJ-101 were designed and synthesized to investigate the structure-activity relationship of the acetamide moiety of the molecule. The biological evaluation showed that the amide moiety is important for the molecule's anticancer activity.

View Article and Find Full Text PDF

Purpose: Child welfare practice often requires direct intervention with vulnerable children and families, whereby workers are responsible for various services and decisions that may have a lasting impact on families involved in the child welfare system. Research illustrates that clinical needs are not necessarily the only factor at the foundation of decision making; Evidence-informed Decision Making (EIDM) can act as a foundation for critical thinking and deliberate practice in the context of child welfare service delivery. This study evaluates an EIDM training that aimed to enhance workers' behavior and attitude toward the EIDM process with a focus on research.

View Article and Find Full Text PDF

ZJ-101 is a structurally simplified analog of marine natural product superstolide A that was previously designed and synthesized in our laboratory. Biological investigation shows that ZJ-101 maintains the potent anticancer activity of the original natural product with an undefined mechanism of action. To facilitate chemical biology study, a biotinylated ZJ-101 was synthesized and biologically evaluated.

View Article and Find Full Text PDF

Marine natural products represent a unique source for clinically relevant drugs due to their vast molecular and mechanistic diversity. ZJ-101 is a structurally simplified analog of the marine natural product superstolide A, isolated from the New Caledonian sea sponge . The mechanistic activity of the superstolides has until recently remained a mystery.

View Article and Find Full Text PDF

Background: Independent Component Analysis (ICA) allows the dissection of omic datasets into modules that help to interpret global molecular signatures. The inherent randomness of this algorithm can be overcome by clustering many iterations of ICA together to obtain robust components. Existing algorithms for robust ICA are dependent on the choice of clustering method and on computing a potentially biased and large Pearson distance matrix.

View Article and Find Full Text PDF

Retinal photoreceptors have a distinct transcriptomic profile compared to other neuronal subtypes, likely reflecting their unique cellular morphology and function in the detection of light stimuli by way of the ciliary outer segment. We discovered a layer of this molecular specialization by revealing that the vertebrate retina expresses the largest number of tissue-enriched microexons of all tissue types. A subset of these microexons is included exclusively in photoreceptor transcripts, particularly in genes involved in cilia biogenesis and vesicle-mediated transport.

View Article and Find Full Text PDF

RNA splicing is widely dysregulated in cancer, frequently due to altered expression or activity of splicing factors (SFs). Microexons are extremely small exons (3-27 nucleotides long) that are highly evolutionarily conserved and play critical roles in promoting neuronal differentiation and development. Inclusion of microexons in mRNA transcripts is mediated by the SF Serine/Arginine Repetitive Matrix 4 (SRRM4), whose expression is largely restricted to neural tissues.

View Article and Find Full Text PDF

Itraconazole, a widely used antifungal drug, was found to possess antiangiogenic activity and is currently undergoing multiple clinical trials for the treatment of different types of cancer. However, it suffers from extremely low solubility and strong interactions with many drugs through inhibition of CYP3A4, limiting its potential as a new antiangiogenic and anticancer drug. To address these issues, a series of analogs in which the phenyl group is replaced with pyridine or fluorine-substituted benzene was synthesized.

View Article and Find Full Text PDF

Summary: Accurate 3D modelling of protein-protein interactions (PPI) is essential to compensate for the absence of experimentally determined complex structures. Here, we present a new set of commands within the ModelX toolsuite capable of generating atomic-level protein complexes suitable for interface design. Among these commands, the new tool ProteinFishing proposes known and/or putative alternative 3D PPI for a given protein complex.

View Article and Find Full Text PDF

Itraconazole has been found to possess potent antiangiogenic activity, exhibiting promising antitumor activity in several human clinical studies. The wider use of itraconazole in the treatment of cancer, however, has been limited by its potent inhibition of the drug metabolizing enzyme cytochrome P450 3A4 (CYP3A4). In an effort to eliminate the CYP3A4 inhibition while retaining its antiangiogenic activity, we designed and synthesized a series of derivatives in which the 1,2,4-triazole ring is replaced with various azoles and nonazoles.

View Article and Find Full Text PDF

Background/purpose: Prostate cancer is a major burden on public health and a major cause of morbidity and mortality among men worldwide. Drug combination therapy is known as a powerful tool for the treatment of cancer. The aim of this study is to evaluate the synergistic inhibitory mechanisms of clofoctol and sorafenib in the treatment of prostate cancer.

View Article and Find Full Text PDF

Cholesterol plays a key role in membrane protein function and signaling in endothelial cells. Thus, disturbing cholesterol trafficking is an effective approach for inhibiting angiogenesis. We recently identified astemizole (AST), an antihistamine drug, as a cholesterol trafficking inhibitor from a phenotypic screen.

View Article and Find Full Text PDF

Itraconazole (ITZ) is a well-known, FDA-approved antifungal drug that is also in clinical trials for its anticancer activity. ITZ exerts its anticancer activity through several disparate targets and pathways. ITZ inhibits angiogenesis by hampering the functioning of the vascular endothelial growth receptor 2 (VEGFR2) and by indirectly inhibiting mTOR signaling.

View Article and Find Full Text PDF

Cholesterol is an important modulator of membrane protein function and signaling in endothelial cells, thus making it an emerging target for anti-angiogenic agents. In this study, we employed a phenotypic screen that detects intracellular cholesterol distribution in endothelial cells (HUVEC) and identified 13 existing drugs as cholesterol trafficking inhibitors. Cepharanthine, an approved drug for anti-inflammatory and cancer management use, was amongst the candidates, which was selected for in-depth mechanistic studies to link cholesterol trafficking and angiogenesis.

View Article and Find Full Text PDF

The antifungal drug itraconazole was recently found to exhibit potent antiangiogenic activity and has since been repurposed as an investigational anticancer agent. Itraconazole has been shown to exert its antiangiogenic activity through inhibition of the mTOR signaling pathway, but the molecular mechanism of action was unknown. We recently identified the mitochondrial protein VDAC1 as a target of itraconazole and a mediator of its activation of AMPK, an upstream regulator of mTOR.

View Article and Find Full Text PDF

Identifying the molecular target(s) of small molecules is a challenging but necessary step towards understanding their mechanism of action. While several target identification methods have been developed and used to successfully elucidate the binding proteins of a variety of small molecules, these techniques have drawbacks that make them unsuitable for detecting certain types of small molecule-target interactions. In particular, non-covalent interactions that depend on native cellular conditions, such as those of membrane proteins whose structures may be perturbed upon cell lysis, are often not amenable to affinity-based target identification methods.

View Article and Find Full Text PDF

Compound ZJ-101, a structurally simplified analog of the marine natural product superstolide A, was previously developed in our laboratory. In the subsequent structure-activity relationship study, a new analog ZJ-109 was designed and synthesized to probe the importance of the lactone moiety of the molecule by replacing the lactone in ZJ-101 with a lactam. The biological evaluation showed that ZJ-109 is about 8-12 times less active against cancer cells in vitro than ZJ-101, suggesting that the lactone moiety of the molecule is important for its anticancer activity.

View Article and Find Full Text PDF

Triptolide, a key ingredient from the traditional Chinese medicinal plant thunder god vine, which has been used to treat inflammation and autoimmune diseases for centuries, has been shown to be an irreversible inhibitor of the XPB subunit of the transcription factor TFIIH and initiation of RNA polymerase II mediated transcription. The clinical development of triptolide over the past two decades has been limited by its toxicity and low water solubility. Herein, we report the development of a glucose conjugate of triptolide, named glutriptolide, which was intended to target tumor cells overexpressing glucose transporters selectively.

View Article and Find Full Text PDF

Compound ZJ-101, a structurally simplified analog of the marine natural product superstolide A, was previously developed in our laboratory. In the subsequent structure-activity relationship study, two new analogs, ZJ-105 and ZJ-106, were designed and synthesized to probe the importance of the conjugated trienyl lactone moiety of the molecule by replacing the C2-C3 double bond in ZJ-101 with a single bond and switching the geometry of the C4-C5 double bond in ZJ-101 from Z to E, respectively. Biological evaluation showed that ZJ-105 completely loses antiproliferative activity whereas ZJ-106 is significantly less active against cancer cells in vitro than ZJ-101, suggesting that the conjugated trienyl lactone moiety of the molecule is critical for its anticancer activity.

View Article and Find Full Text PDF

Compound ZJ-101, a structurally simplified analog of the marine natural product superstolide A, was previously developed in our laboratory. In the subsequent structure-activity relationship study, a new analog ZJ-102 was designed and synthesized to probe the importance of the cyclohexenyl group through its replacement to a phenyl group using a concise and convergent synthetic approach. The biological evaluation showed that this new analog ZJ-102 is significantly less active against cancer cells in vitro than ZJ-101, suggesting that the cyclohexenyl ring (along with its two stereogenic centers) present in ZJ-101 is important for its anticancer activity.

View Article and Find Full Text PDF

Purpose: Itraconazole is a triazole antifungal drug that has recently been found to inhibit angiogenesis. Itraconazole is a relatively well-tolerated drug but shows hepatotoxicity in a small subset of patients. Itraconazole contains three chiral centers and the commercial itraconazole is composed of four cis-stereoisomers (named IT-A, IT-B, IT-C, and IT-D).

View Article and Find Full Text PDF

Itraconazole, a clinically used antifungal drug, was found to possess potent antiangiogenic and anticancer activity that is unique among the azole antifungals. Previous mechanistic studies have shown that itraconazole inhibits the mechanistic target of rapamycin (mTOR) signaling pathway, which is known to be a critical regulator of endothelial cell function and angiogenesis. However, the molecular target of itraconazole that mediates this activity has remained unknown.

View Article and Find Full Text PDF

Selective estrogen receptor modulators (SERM) including tamoxifen are known to inhibit angiogenesis. However, the underlying mechanism, which is independent of their action on the estrogen receptor (ER), has remained largely unknown. In the present study, we found that tamoxifen and other SERM inhibited cholesterol trafficking in endothelial cells, causing a hyper-accumulation of cholesterol in late endosomes/lysosomes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2guk3our6qmerl8q59qgrhostc1a67kv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once