Am J Physiol Lung Cell Mol Physiol
November 2024
Bronchoalveolar lavage (BAL) is used by researchers to study molecular interactions within healthy and diseased human lungs. However, the utility of BAL fluid measurements may be limited by difficulties accounting for dilution of the epithelial lining fluid (ELF) sampled and inconsistent collection techniques. The use of endogenous markers to estimate ELF dilution has been proposed as a potential method to normalize acellular molecule measurements in BAL fluid, but these markers are also imperfect and prone to inaccuracy.
View Article and Find Full Text PDFClin J Am Soc Nephrol
November 2024
Key Points: Plasma cystatin C is decreased in participants with AKI requiring continuous KRT (CKRT) with early kidney function recovery. Despite being cleared by CKRT, plasma cystatin C in the first 3 days of CKRT may be a useful clinical tool to help predict the prognosis of AKI requiring CKRT.
Background: Plasma cystatin C is a reliable marker to estimate kidney function; however, it is unknown whether this remains true in patients receiving continuous KRT (CKRT).
Introduction: Patients with acute kidney injury (AKI) or end stage kidney disease (ESKD) may require continuous renal replacement therapy (CRRT) as a supportive intervention. While CRRT is effective at achieving solute control and fluid balance, the indiscriminate nature of this procedure raises the possibility that beneficial substances may similarly be removed. Hepcidin, an antimicrobial peptide with pivotal roles in iron homeostasis and pathogen clearance, has biochemical properties amenable to direct removal via CRRT.
View Article and Find Full Text PDFAcute respiratory distress syndrome (ARDS) is a common cause of respiratory failure yet has few pharmacologic therapies, reflecting the mechanistic heterogeneity of lung injury. We hypothesized that damage to the alveolar epithelial glycocalyx, a layer of glycosaminoglycans interposed between the epithelium and surfactant, contributes to lung injury in patients with ARDS. Using mass spectrometry of airspace fluid noninvasively collected from mechanically ventilated patients, we found that airspace glycosaminoglycan shedding (an index of glycocalyx degradation) occurred predominantly in patients with direct lung injury and was associated with duration of mechanical ventilation.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2019
Sepsis patients are at increased risk for hospital-acquired pulmonary infections, potentially due to postseptic immunosuppression known as the compensatory anti-inflammatory response syndrome (CARS). CARS has been attributed to leukocyte dysfunction, with an unclear role for endothelial cells. The pulmonary circulation is lined by an endothelial glycocalyx, a heparan sulfate-rich layer essential to pulmonary homeostasis.
View Article and Find Full Text PDFSepsis induces heparanase-mediated degradation of the endothelial glycocalyx, a heparan sulfate-enriched endovascular layer critical to vascular homeostasis, releasing highly sulfated domains of heparan sulfate into the circulation. These domains are oligosaccharides rich in heparin-like trisulfated disaccharide repeating units. Using a chemoenzymatic approach, an undecasaccharide containing a uniformly C-labeled internal 2-sulfoiduronic acid residue was synthesized on a -nitrophenylglucuronide acceptor.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2018
The lung epithelial glycocalyx is a carbohydrate-enriched layer lining the pulmonary epithelial surface. Although epithelial glycocalyx visualization has been reported, its composition and function remain unknown. Using immunofluorescence and mass spectrometry, we identified heparan sulfate (HS) and chondroitin sulfate within the lung epithelial glycocalyx.
View Article and Find Full Text PDFAdvances in tissue fixation and imaging techniques have yielded increasing appreciation for the glycosaminoglycan-rich endothelial glycocalyx and its in vivo manifestation, the endothelial surface layer (ESL). Pathological loss of the ESL during critical illness promotes local endothelial dysfunction and, consequently, organ injury. Glycosaminoglycan fragments, such as heparan sulfate, are released into the plasma of animals and humans after ESL degradation and have thus served as a biomarker of endothelial injury.
View Article and Find Full Text PDFExtracellular histones are cationic damage-associated molecular pattern molecules capable of directly inducing cellular injury via charge-mediated interactions with plasma membranes. Accordingly, histones released into the plasma during critical illness are known to contribute to the onset and propagation of lung injury. Vascular injury (with consequent degradation of the endothelial glycocalyx) simultaneously releases anionic heparan sulfate fragments (hexa- to octasaccharides in size) into the plasma.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
August 2017
Sepsis outcomes are heavily dependent on the development of septic organ injury, but no interventions exist to interrupt or reverse this process. microRNA-223 (miR-223) is known to be involved in both inflammatory gene regulation and host-pathogen interactions key to the pathogenesis of sepsis. The goal of this study was to determine the role of miR-223 as a mediator of septic kidney injury.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
June 2017
The endothelial glycocalyx is a heparan sulfate (HS)-rich endovascular structure critical to endothelial function. Accordingly, endothelial glycocalyx degradation during sepsis contributes to tissue edema and organ injury. We determined the endogenous mechanisms governing pulmonary endothelial glycocalyx reconstitution, and if these reparative mechanisms are impaired during sepsis.
View Article and Find Full Text PDFRemarkable progress has been achieved in understanding the regulation of gene expression and protein translation, and how aberrancies in these template-driven processes contribute to disease pathogenesis. However, much of cellular physiology is controlled by non-DNA, nonprotein mediators, such as glycans. The focus of this Translational Review is to highlight the importance of a specific glycan polymer-the glycosaminoglycan heparan sulfate (HS)-on lung health and disease.
View Article and Find Full Text PDFNon-small-cell lung cancer (NSCLC) is a common malignancy with a poor prognosis. Despite progress targeting oncogenic drivers, there are no therapies targeting tumor-suppressor loss. Smad4 is an established tumor suppressor in pancreatic and colon cancer; however, the consequences of Smad4 loss in lung cancer are largely unknown.
View Article and Find Full Text PDFLung adenocarcinoma (AdC) and lung squamous cell carcinoma (SCC) are the most common non-small cell lung cancer (NSCLC) subtypes, however, most genetic mouse models of lung cancer produce predominantly, if not exclusively, AdC. Whether this is secondary to targeting mutations to the distal airway cells or to the use of activating Kras mutations that drive AdC formation is unknown. We previously showed that targeting Kras(G12D) activation and transforming growth factor β receptor type II (TGFβRII) deletion to airway basal cells via a keratin promoter induced formation of both lung AdC and SCC.
View Article and Find Full Text PDFFibroblasts residing in connective tissues throughout the body are responsible for extracellular matrix (ECM) homeostasis and repair. In response to tissue damage, they activate to become myofibroblasts, which have organized contractile cytoskeletons and produce a myriad of proteins for ECM remodeling. However, persistence of myofibroblasts can lead to fibrosis with excessive collagen deposition and tissue stiffening.
View Article and Find Full Text PDFPurpose: Lung adenocarcinoma and lung squamous cell carcinoma (SCC) are the most common non-small cell lung cancer (NSCLC) subtypes. This study was designed to determine whether reduced expression of TGFβ type II receptor (TGFβRII) promotes lung adenocarcinoma and SCC carcinogenesis.
Experimental Design: We examined TGFβRII expression at the protein and mRNA levels in human NSCLC samples and assessed the relationship between TGFβRII expression and clinicopathologic parameters.
Poly(ethylene glycol) (PEG) hydrogels are being developed as cell delivery vehicles that have great potential to improve neuronal replacement therapies. Current research priorities include (1) characterizing neural cell growth within PEG hydrogels relative to standard culture systems and (2) generating neuronal-enriched populations within the PEG hydrogel environment. This study compares the percentage of neural precursor cells (NPCs), neurons, and glia present when dissociated neural cells are seeded within PEG hydrogels relative to standard monolayer culture.
View Article and Find Full Text PDFIn the present study, we assessed the role of Smad4, a component of the transforming growth factor-beta signaling pathway, in cutaneous wound repair. Interestingly, when Smad4 was deleted in the epidermis, several defects in wound healing were observed in non-keratinocyte compartments. In comparison with wounded wild-type mouse skin, Smad4-deficient wounds had delayed wound closure and remodeling.
View Article and Find Full Text PDF