Obesity and consumption of a high-fat diet are known to increase the risk of Alzheimer's disease (AD). Diets high in fat also increase disease neuropathology and/or cognitive deficits in AD mouse models. However, the effect of a high-fat diet on both the neuropathology and memory impairments in the triple-transgenic mouse model of AD (3xTgAD) is unknown.
View Article and Find Full Text PDFAlzheimer's disease (AD) is associated with non-cognitive symptoms such as changes in feeding behaviour that are often characterised by an increase in appetite. Increased food intake is observed in several mouse models of AD including the triple transgenic (3×TgAD) mouse, but the mechanisms underlying this hyperphagia are unknown. We therefore examined feeding behaviour in 3×TgAD mice and tested their sensitivity to exogenous and endogenous satiety factors by assessing food intake and activation of key brain regions.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry.
View Article and Find Full Text PDFCRH and urotensin I (UI) are neuroendocrine peptides that belong to the superfamily of corticotropin-releasing factors. In mammals, these peptides regulate the stress response and other central nervous system functions, whereas in fish an involvement for UI in osmoregulation has also been suggested. We have identified, characterized, and localized the genes encoding these peptides in a unique fish neuroendocrine organ, the caudal neurosecretory system (CNSS).
View Article and Find Full Text PDF