Publications by authors named "Sarah G Nowakowski"

Myosin activation is a viable approach to treat systolic heart failure. We previously demonstrated that striated muscle myosin is a promiscuous ATPase that can use most nucleoside triphosphates as energy substrates for contraction. When 2-deoxy ATP (dATP) is used, it acts as a myosin activator, enhancing cross-bridge binding and cycling.

View Article and Find Full Text PDF

Impaired systolic function, resulting from acute injury or congenital defects, leads to cardiac complications and heart failure. Current therapies slow disease progression but do not rescue cardiac function. We previously reported that elevating the cellular 2 deoxy-ATP (dATP) pool in transgenic mice via increased expression of ribonucleotide reductase (RNR), the enzyme that catalyzes deoxy-nucleotide production, increases myosin-actin interaction and enhances cardiac muscle contractility.

View Article and Find Full Text PDF

We previously demonstrated that cardiac myosin can use 2-deoxy-ATP (dATP) as an energy substrate, that it enhances contraction and relaxation with minimal effect on calcium-handling properties in vitro, and that contractile enhancement occurs with only minor elevation of cellular [dATP]. Here, we report the effect of chronically enhanced dATP concentration on cardiac function using a transgenic mouse that overexpresses the enzyme ribonucleotide reductase (TgRR), which catalyzes the rate-limiting step in de novo deoxyribonucleotide biosynthesis. Hearts from TgRR mice had elevated left ventricular systolic function compared with wild-type (WT) mice, both in vivo and in vitro, without signs of hypertrophy or altered diastolic function.

View Article and Find Full Text PDF

Memory consolidation is the process by which new and labile information is stabilized as long-term memory. Consolidation of spatial memories is thought to involve the transfer of information from the hippocampus to cortical regions. While the hypometabolic and hypothermic state of torpor dramatically changes hippocampal connectivity, little work has considered the functional consequences of these changes.

View Article and Find Full Text PDF