Publications by authors named "Sarah Fullington"

To probe the mechanism of inhibition of several previously-published metallo-β-lactamase (MBL) inhibitors for the clinically-important MBL Verona integron-encoded metallo-β-lactamase 2 (VIM-2), equilibrium dialyses with metal analyses, native state electrospray ionization mass spectrometry (ESI-MS), and UV-Vis spectrophotometry were utilized. The mechanisms of inhibition were analyzed for ethylenediaminetetraacetic acid (EDTA); dipicolinic acid (DPA) and DPA analogs 6-(1H-tetrazol-5-yl)picolinic acid (1T5PA) and 4-(3-aminophenyl)pyridine-2,6-dicarboxylic acid (3AP-DPA); thiol-containing compounds, 2,3-dimercaprol, thiorphan, captopril, and tiopronin; and 5-(pyridine-3-sulfonamido)-1,3-thiazole-4-carboxylic acid (ANT-431). UV-Vis spectroscopy and native-state ESI-MS results showed the formation of ternary complexes between VIM-2 and 1T5PA, ANT-431, thiorphan, captopril, and tiopronin, while a metal stripping mechanism was shown with VIM-2 and EDTA and DPA.

View Article and Find Full Text PDF

Due to the rapid proliferation of antibiotic-resistant pathogenic bacteria, known as carbapenem-resistant enterobacteriaceae, the efficacy of β-lactam antibiotics is threatened. β-lactam antibiotics constitute over 50% of the available antibiotic arsenal. Recent efforts have been focused on developing inhibitors to these enzymes.

View Article and Find Full Text PDF

In an effort to evaluate whether a recently reported putative metallo-β-lactamase (MβL) contains a novel MβL active site, SPS-1 from Sediminispirochaeta smaragdinae was overexpressed, purified, and characterized using spectroscopic and crystallographic studies. Metal analyses demonstrate that recombinant SPS-1 binds nearly 2 equiv of Zn(II), and steady-state kinetic studies show that the enzyme hydrolyzes carbapenems and certain cephalosporins but not β-lactam substrates with bulky substituents at the 6/7 position. Spectroscopic studies of Co(II)-substituted SPS-1 suggest a novel metal center in SPS-1, with a reduced level of spin coupling between the metal ions and a novel Zn metal binding site.

View Article and Find Full Text PDF