Publications by authors named "Sarah Freemantle"

Testicular germ cell tumors (TGCTs) can be treated with cisplatin-based therapy. However, a clinically significant number of cisplatin-resistant patients die from progressive disease as no effective alternatives exist. Curative cisplatin therapy results in acute and life-long toxicities in the young TGCT patient population providing a rationale to decrease cisplatin exposure.

View Article and Find Full Text PDF

Testicular germ cell tumors (TGCTs) can be treated with cisplatin-based therapy. However, a clinically significant number of cisplatin-resistant patients die from progressive disease as no effective alternatives exist. Curative cisplatin therapy results in acute and life-long toxicities in the young TGCT patient population providing a rationale to decrease cisplatin exposure.

View Article and Find Full Text PDF

The potential effects of poly- and perfluoroalkyl substances (PFAS) are a recently emergent human and environmental health concern. There is a consistent link between PFAS exposure and cancer, but the mechanisms are poorly understood. Although epidemiological evidence supporting PFAS exposure and cancer in general is conflicting, there is relatively strong evidence linking PFAS and testicular germ cell tumors (TGCTs).

View Article and Find Full Text PDF

G0/G1 switch gene 2 (G0S2) is known to inhibit lipolysis by inhibiting adipose triglyceride lipase (ATGL). In this report, we dissect the role of G0S2 in ER+ versus ER- breast cancer. Overexpression of G0S2 in ER- cells increased cell proliferation, while G0S2 overexpression in ER+ cells decreased cell proliferation.

View Article and Find Full Text PDF

Testicular germ cell tumors (TGCTs) are aggressive but sensitive to cisplatin-based chemotherapy. Alternative therapies are needed for tumors refractory to cisplatin with hypomethylating agents providing one possibility. The mechanisms of cisplatin hypersensitivity and resistance in TGCTs remain poorly understood.

View Article and Find Full Text PDF

Compared to many common solid tumors, the main genetic drivers of most testicular germ cell tumors (TGCTs) are unknown. Decades of focus on genomic alterations in TGCTs including awareness of a near universal increase in copies of chromosome 12p have failed to uncover exceptional driver genes, especially in genes that can be targeted therapeutically. Thus far, TGCT patients have missed out on the benefits of targeted therapies available to treat most other malignancies.

View Article and Find Full Text PDF

Ubiquitin specific peptidase 18 (USP18), previously known as UBP43, is the IFN-stimulated gene 15 (ISG15) deconjugase. USP18 removes ISG15 from substrate proteins. This study reports that USP18-null mice (vs.

View Article and Find Full Text PDF

Cyclin-dependent kinase 2 (CDK2) antagonism inhibits clustering of excessive centrosomes at mitosis, causing multipolar cell division and apoptotic death. This is called anaphase catastrophe. To establish induced anaphase catastrophe as a clinically tractable antineoplastic mechanism, induced anaphase catastrophe was explored in different aneuploid cancers after treatment with CYC065 (Cyclacel), a CDK2/9 inhibitor.

View Article and Find Full Text PDF

Testicular germ cell tumours (TGCTs) respond well to cisplatin-based therapy. However, cisplatin resistance and poor outcomes do occur. It has been suggested that a shift towards DNA hypermethylation mediates cisplatin resistance in TGCT cells, although there is little direct evidence to support this claim.

View Article and Find Full Text PDF

Cancer cells are genetically unstable and often have supernumerary centrosomes. When supernumerary centrosome clustering is inhibited at mitosis, multipolar cell division is forced, triggering apoptosis in daughter cells. This proapoptotic pathway is called anaphase catastrophe.

View Article and Find Full Text PDF

Testicular germ cell tumors (TGCTs) are a cancer pharmacology success story with a majority of patients cured even in the highly advanced and metastatic setting. Successful treatment of TGCTs is primarily due to the exquisite responsiveness of this solid tumor to cisplatin-based therapy. However, a significant percentage of patients are, or become, refractory to cisplatin and die from progressive disease.

View Article and Find Full Text PDF

A greater understanding of the hypersensitivity and curability of testicular germ cell tumors (TGCTs) has the potential to inform strategies to sensitize other solid tumors to conventional chemotherapies. The mechanisms of cisplatin hypersensitivity and resistance in embryonal carcinoma (EC), the stem cells of TGCTs, remain largely undefined. To study the mechanisms of cisplatin resistance we generated a large panel of independently derived, acquired resistant clones from three distinct parental EC models employing a protocol designed to match standard of care regimens of TGCT patients.

View Article and Find Full Text PDF

Ubiquitination and ubiquitin-like posttranslational modifications (PTM) regulate activity and stability of oncoproteins and tumor suppressors. This implicates PTMs as antineoplastic targets. One way to alter PTMs is to inhibit activity of deubiquitinases (DUB) that remove ubiquitin or ubiquitin-like proteins from substrate proteins.

View Article and Find Full Text PDF

G0/G1 switch gene 2 (G0S2) is a direct retinoic acid target implicated in cancer biology and therapy based on frequent methylation-mediated silencing in diverse solid tumors. We recently reported that low G0S2 expression in breast cancer, particularly estrogen receptor-positive (ER+) breast cancer, correlates with increased rates of recurrence, indicating that G0S2 plays a role in breast cancer progression. However, the function(s) and mechanism(s) of G0S2 tumor suppression remain unclear.

View Article and Find Full Text PDF

Background: The first generation CDK2/7/9 inhibitor seliciclib (CYC202) causes multipolar anaphase and apoptosis in lung cancer cells with supernumerary centrosomes (known as anaphase catastrophe). We investigated a new and potent CDK2/9 inhibitor, CCT68127 (Cyclacel).

Methods: CCT68127 was studied in lung cancer cells (three murine and five human) and control murine pulmonary epithelial and human immortalized bronchial epithelial cells.

View Article and Find Full Text PDF

is frequently mutated in lung cancers and is associated with aggressive biology and chemotherapy resistance. Therefore, innovative approaches are needed to treat these lung cancers. Prior work implicated the IFN-stimulated gene 15 (ISG15) deubiquitinase (DUB) USP18 as having antineoplastic activity by regulating lung cancer growth and oncoprotein stability.

View Article and Find Full Text PDF

The ubiquitin-like modifier interferon-stimulated gene 15 (ISG15) is implicated in both oncogenic and tumor suppressive programs. Yet, few ISGylation substrates are known and functionally validated in cancer biology. We previously found specific oncoproteins were substrates of ISGylation and were stabilized by the ISG15-specific deubiquitinase (DUB) ubiquitin specific peptidase 18 (USP18).

View Article and Find Full Text PDF

Testicular germ cell tumors (TGCTs) are the most common cancers of young males. A substantial portion of TGCT patients are refractory to cisplatin. There are no effective therapies for these patients, many of whom die from progressive disease.

View Article and Find Full Text PDF

Despite advances in targeted therapy, lung cancer remains the most common cause of cancer-related mortality in the United States. Chromosomal instability is a prominent feature in lung cancer and, because it rarely occurs in normal cells, it represents a potential therapeutic target. Our prior work discovered that lung cancer cells undergo anaphase catastrophe in response to inhibition of cyclin-dependent kinase 2 (CDK2), followed by apoptosis and reduced growth.

View Article and Find Full Text PDF

Wnt/β-catenin signalling directs fundamental processes during metazoan development and can be aberrantly activated in cancer. Wnt stimulation induces the recruitment of the scaffold protein Axin from an inhibitory destruction complex to a stimulatory signalosome. Here we analyse the early effects of Wnt on Axin and find that the ADP-ribose polymerase Tankyrase (Tnks)--known to target Axin for proteolysis-regulates Axin's rapid transition following Wnt stimulation.

View Article and Find Full Text PDF

Methylation-mediated silencing of G0-G1 switch gene 2 (G0S2) has been detected in a variety of solid tumors, whereas G0S2 induction is associated with remissions in patients with acute promyelocytic leukemia, implying that G0S2 may possess tumor suppressor activity. In this study, we clearly demonstrate that G0S2 opposes oncogene-induced transformation using G0s2-null immortalized mouse embryonic fibroblasts (MEF). G0s2-null MEFs were readily transformed with HRAS or EGFR treatment compared with wild-type MEFs.

View Article and Find Full Text PDF

Background: USP18 (ubiquitin-specific protease 18) removes ubiquitin-like modifier interferon stimulated gene 15 (ISG15) from conjugated proteins. USP18 null mice in a FVB/N background develop tumors as early as 2 months of age. These tumors are leiomyosarcomas and thus represent a new murine model for this disease.

View Article and Find Full Text PDF

The lack of an effective detection method for lung circulating tumor cells (CTCs) presents a substantial challenge to elucidate the value of CTCs as a diagnostic or prognostic indicator in lung cancer, particularly in nonsmall cell lung cancer (NSCLC). In this study, we prepared a capture surface exploiting strong multivalent binding mediated by poly(amidoamine) (PAMAM) dendrimers to capture CTCs originating from lung cancers. Given that 85% of the tumor cells from NSCLC patients overexpress epidermal growth factor receptor (EGFR), anti-EGFR was chosen as a capture agent.

View Article and Find Full Text PDF

Chromosomal instability (CIN) is a hallmark of solid tumor biology and is implicated in carcinogenesis. Preferentially eliminating malignant cells by targeting CIN and aneuploidy is an attractive antineoplastic strategy. We previously reported that CDK2 antagonism causes lung cancer cells to undergo anaphase catastrophe and apoptosis through inhibition of phosphorylation of the centrosomal protein CP110.

View Article and Find Full Text PDF

Aneuploidy is frequently detected in human cancers and is implicated in carcinogenesis. Pharmacologic targeting of aneuploidy is an attractive therapeutic strategy, as this would preferentially eliminate malignant over normal cells. We previously discovered that CDK2 inhibition causes lung cancer cells with more than two centrosomes to undergo multipolar cell division leading to apoptosis, defined as anaphase catastrophe.

View Article and Find Full Text PDF