Publications by authors named "Sarah Faulkner"

Chronic hepatitis B virus (HBV) infection is an incurable global health threat responsible for causing liver disease and hepatocellular carcinoma. During the genesis of infection, HBV establishes an independent minichromosome consisting of the viral covalently closed circular DNA (cccDNA) genome and host histones. The viral X gene must be expressed immediately upon infection to induce degradation of the host silencing factor, Smc5/6.

View Article and Find Full Text PDF

The H1 linker histone family is the most abundant group of eukaryotic chromatin-binding proteins. However, their contribution to chromosome structure and function remains incompletely understood. Here we use single-molecule fluorescence and force microscopy to directly visualize the behavior of H1 on various nucleic acid and nucleosome substrates.

View Article and Find Full Text PDF

Aim Of The Study: Targeted temperature management is a class I indication in comatose patients after a cardiac arrest. While the literature has primarily focused on innovative methods to achieve target temperatures, pharmacologic therapy has received little attention. We sought to examine whether pharmacologic therapy using antipyretics is effective in maintaining normothermia in post cardiac arrest patients.

View Article and Find Full Text PDF

Aim Of The Study: Most survivors of an in-hospital cardiac arrest do not leave the hospital alive, and there is a need for a more patient-centered, holistic approach to the assessment of prognosis after an arrest. We sought to identify pre-, peri-, and post-arrest variables associated with in-hospital mortality amongst survivors of an in-hospital cardiac arrest.

Methods: This was a retrospective cohort study of patients ≥18 years of age who were resuscitated from an in-hospital arrest at our University Medical Center from January 1, 2013 to September 31, 2016.

View Article and Find Full Text PDF

Histone nonenzymatic covalent modifications (NECMs) have recently emerged as an understudied class of posttranslational modifications that regulate chromatin structure and function. These NECMs alter the surface topology of histone proteins, their interactions with DNA and chromatin regulators, as well as compete for modification sites with enzymatic posttranslational modifications. NECM formation depends on the chemical compatibility between a reactive molecule and its target site, in addition to their relative stoichiometries.

View Article and Find Full Text PDF

Posttranslational modification of proteins expands their structural and functional capabilities beyond those directly specified by the genetic code. However, the vast diversity of chemically plausible (including unnatural but functionally relevant) side chains is not readily accessible. We describe C (sp)-C (sp) bond-forming reactions on proteins under biocompatible conditions, which exploit unusual carbon free-radical chemistry, and use them to form Cβ-Cγ bonds with altered side chains.

View Article and Find Full Text PDF

We have used RNA aptamer:gelonin conjugates to target and specifically destroy cells overexpressing the known cancer biomarker prostate-specific membrane antigen (PSMA). Aptamer:toxin conjugates have an IC50 of 27 nmol/L and display an increased potency of at least 600-fold relative to cells that do not express PSMA. The aptamer not only promotes uptake into target cells but also decreases the toxicity of gelonin in non-target cells.

View Article and Find Full Text PDF