Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease characterized by insulin deficiency and loss of pancreatic islet β-cells. The objective of this study is to identify de novo mutations in 13 trios from singleton families that contribute to the genetic basis of T1DM through the application of whole-exome sequencing (WES). Of the 13 families sampled for this project, 12 had de novo variants, with Family 7 having the highest number (nine) of variants linked to T1DM/autoimmune pathways, whilst Family 4 did not have any variants past the filtering steps.
View Article and Find Full Text PDFAside from its anthropological relevance, the characterization of the allele frequencies of genes in the human Major Histocompatibility Complex (MHC) and the combination of these alleles that make up MHC conserved extended haplotypes (CEHs) is necessary for histocompatibility matching in transplantation as well as mapping disease association loci. The structure and content of the MHC region in Middle Eastern populations remain poorly characterized, posing challenges when establishing disease association studies in ethnic groups that inhabit the region and reducing the capacity to translate genetic research into clinical practice. This study was conceived to address a gap of knowledge, aiming to characterize CEHs in the United Arab Emirates (UAE) population through segregation analysis of high-resolution, pedigree-phased, MHC haplotypes derived from 41 families.
View Article and Find Full Text PDFAim: Type 2 Diabetes Mellitus (T2DM) is associated with microvascular complications, including diabetic retinopathy (DR), diabetic nephropathy (DNp), and diabetic peripheral neuropathy (DPN). In this study, we investigated genetic variations and Single Nucleotide Polymorphisms (SNPs) associated with DR, DNp, DPN and their combinations among T2DM patients of Arab origin from the United Arab Emirates, to establish the role of genes in the progression of microvascular diabetes complications.
Methods: A total of 158 Emirati patients with T2DM were recruited in this study.
Objective: Type 2 diabetes mellitus (T2DM) has a multifactorial etiology involving a complex interplay between genes and the environment. The prevalence of T2DM among the countries of the Gulf Corporation Council (GCC), including the United Arab Emirates (UAE), ranks among the top 15 in the world. A number of studies have shown an increase in T2DM risk for the "TT" genotype at the rs4506565 and rs12255372 Single Nucleotide Polymorphisms (SNP) of the TCF7L2 gene.
View Article and Find Full Text PDFObjective: Overweight and obesity are major risk factors for Type 2 Diabetes Mellitus (T2DM), cardiovascular disease (CVD) and cancer. Genetic predisposition has been shown to play a key role in obesity, and genome-wide association studies (GWAS) have identified multiple loci linked with obesity in various ethnic groups. The aim of this study was to validate the reported genetic variants associated with obesity and overweight in a young UAE Arab population.
View Article and Find Full Text PDFBackground: Obesity is a metabolic disease that is widely prevalent with approximately 600 million people classified as obese worldwide. Its etiology is multifactorial and involves a complex interplay between genes and the environment. Over the past few decades, obesity rates among the Emirati population have been increasing.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
January 2018
At a prevalence rate close to 19.5%, the UAE has one of the highest rates of Type 2 Diabetes Mellitus (T2DM) in the world. Genome wide association studies (GWAS) have led to the identification of several genetic variants that are associated with T2DM.
View Article and Find Full Text PDFPurpose: Type 2 diabetes mellitus (T2DM) is the most common form of diabetes with clinical consequences giving rise to chronic multiple organ complications. Methylenetetrahydrofolate reductase (MTHFR) polymorphisms are genetic variations that have been linked to T2DM, and micro/macrovascular complications. The link between MTHFR and T2DM however is strongly dependent on the ethnic group studied.
View Article and Find Full Text PDFFASEB J
September 2015
Deficiency in the methyl donors vitamin B12 and folate during pregnancy and postnatal life impairs proper brain development. We studied the consequences of this combined deficiency on cerebellum plasticity in offspring from rat mothers subjected to deficient diet during gestation and lactation and in rat neuroprogenitor cells expressing cerebellum markers. The major proteomic change in cerebellum of 21-d-old deprived females was a 2.
View Article and Find Full Text PDFEarly deficiency of the methyl donors folate and vitamin B12 produces hyperhomocysteinemia and cognitive and motor disorders in 21-day-old rat pups from dams fed a diet deficient in methyl donors during gestation and lactation. These disorders are associated with impaired neurogenesis and altered synaptic plasticity in cerebellum. We aimed to investigate whether these disorders could be related to impaired expression of neurosteroidogenesis-associated proteins, key regulator receptors, and some steroid content in the cerebellum.
View Article and Find Full Text PDF