Spaceflight presents a unique environment with complex stressors, including microgravity and radiation, that can influence plant physiology at molecular levels. Combining transcriptomics and proteomics approaches, this research gives insights into the coordination of transcriptome and proteome in Arabidopsis' molecular and physiological responses to Spaceflight environmental stress. Arabidopsis seedlings were germinated and grown in microgravity (µ) aboard the International Space Station (ISS) in NASA Biological Research in Canisters - Light Emitting Diode (BRIC LED) hardware, with the ground control established on Earth.
View Article and Find Full Text PDFSpaceflight-induced changes in astronaut telomeres have garnered significant attention in recent years. While plants represent an essential component of future long-duration space travel, the impacts of spaceflight on plant telomeres and telomerase have not been examined. Here we report on the telomere dynamics of Arabidopsis thaliana grown aboard the International Space Station.
View Article and Find Full Text PDFThe human quest for sustainable habitation of extraterrestrial environments necessitates a robust understanding of life's adaptability to the unique conditions of spaceflight. This study provides a comprehensive proteomic dissection of the Arabidopsis plant's responses to the spaceflight environment through a meta-analysis of proteomics data from four separate spaceflight experiments conducted on the International Space Station (ISS) in different hardware configurations. Raw proteomics LC/MS spectra were analyzed for differential expression in MaxQuant and Perseus software.
View Article and Find Full Text PDFA future in which scientific discoveries are valued and trusted by the general public cannot be achieved without greater inclusion and participation of diverse communities. To envision a path towards this future, in January 2019 a diverse group of researchers, educators, students, and administrators gathered to hear and share personal perspectives on equity, diversity, and inclusion (EDI) in the plant sciences. From these broad perspectives, the group developed strategies and identified tactics to facilitate and support EDI within and beyond the plant science community.
View Article and Find Full Text PDFPlant signaling components are often involved in numerous processes. Calcium, reactive oxygen species, and other signaling molecules are essential to normal biotic and abiotic responses. Yet, the summation of these components is integrated to produce a specific response despite their involvement in a myriad of response cascades.
View Article and Find Full Text PDFPolyethersulfone (PES) membranes provide a versatile tool for gravity-related plant studies. Benefits of this system include straightforward setup, no need for specialized equipment, long-term seed viability between plating and hydration/growth, and adaptability to diverse protocols and downstream analyses. Methods outlined here include seed sterilization, planting, growth, and dissection that will transition directly into any RNA extraction protocol.
View Article and Find Full Text PDFMethods Mol Biol
January 2022
Proteomics has the capacity to identify and quantify the proteins present in a sample. The technique has been used extensively across all model organisms to study various physiological processes and signaling pathways. In addition to providing a global view of regulatory processes inside a cell, proteomics can also be used to identify candidate genes and retrieve information on alternative isoforms of known proteins.
View Article and Find Full Text PDFWith the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes.
View Article and Find Full Text PDFBackground: Understanding of gravity sensing and response is critical to long-term human habitation in space and can provide new advantages for terrestrial agriculture. To this end, the altered gene expression profile induced by microgravity has been repeatedly queried by microarray and RNA-seq experiments to understand gravitropism. However, the quantification of altered protein abundance in space has been minimally investigated.
View Article and Find Full Text PDFViola pubescens is a perennial, mixed breeding herb that produces both chasmogamous and cleistogamous flowers at different times of the season. Once bud type is specified, it does not convert from one form to the other. While temporal production of the two flowers is known to be influenced by environmental factors, the specific environmental cues that signal emergence of each flower type have not been empirically studied.
View Article and Find Full Text PDFLife on Earth has evolved under the influence of gravity. This force has played an important role in shaping development and morphology from the molecular level to the whole organism. Although aquatic life experiences reduced gravity effects, land plants have evolved under a 1- environment.
View Article and Find Full Text PDFis a large genus with worldwide distribution and many traits not currently exemplified in model plants including unique breeding systems and the production of cyclotides. Here we report genome assembly and transcriptomic analyses of the non-model species using short-read DNA sequencing data and RNA-Seq from eight diverse tissues. First, genome size was estimated through flow cytometry, resulting in an approximate haploid genome of 455 Mbp.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
November 2017
The Biological Research in Canisters (BRIC) hardware has been used to house many biology experiments on both the Space Transport System (STS, commonly known as the space shuttle) and the International Space Station (ISS). However, microscopic examination of Arabidopsis seedlings by Johnson et al. (2015) indicated the hardware itself may affect cell morphology.
View Article and Find Full Text PDFTissue preservation is a minimal requirement for the success of plant RNA and protein expression studies. The standard of snap-freezing in liquid nitrogen is not always practical or possible. RNAlater, a concentrated solution of ammonium and cesium sulfates, has become a standard preservative in the absence of liquid nitrogen.
View Article and Find Full Text PDFProteomics is a powerful technique that allows researchers a window into how an organism responds to a mutation, a specific environment, or at a distinct point during development by quantifying relative protein abundance and posttranslational modifications. Here, we describe methods for the proteomic analysis of Arabidopsis thaliana tissue. Extraction protocols are provided for isolation of soluble, plasma membrane, and tonoplast proteins.
View Article and Find Full Text PDFPaleontology yields essential evidence for inferring not only the pattern of evolution, but also the genetic basis of evolution within an ontogenetic framework. Plant fossils provide evidence for the pattern of plant evolution in the form of transformational series of structure through time. Developmentally diagnostic structural features that serve as "fingerprints" of regulatory genetic pathways also are preserved by plant fossils, and here we provide examples of how those fingerprints can be used to infer the mechanisms by which plant form and development have evolved.
View Article and Find Full Text PDFCurr Opin Plant Biol
February 2014
The complex body plan of modern vascular plants evolved by modification of simple systems of branching axes which originated from the determinate vegetative axis of a bryophyte-grade ancestor. Understanding body plan evolution and homologies has implications for land plant phylogeny and requires resolution of the specific developmental changes and their evolutionary sequence. The branched sporophyte may have evolved from a sterilized bryophyte sporangium, but prolongation of embryonic vegetative growth is a more parsimonious explanation.
View Article and Find Full Text PDFPremise: Gravity is an important environmental factor that affects growth and development of plants. In response to changes in gravity, directional growth occurs along the major axes and lateral branches of both shoots and roots. The gravity persistent signal (gps) mutants of Arabidopsis thaliana were previously identified as having an altered response to gravity when reoriented relative to the gravity vector in the cold, with the gps1 mutant exhibiting a complete loss of tropic response under these conditions.
View Article and Find Full Text PDFPremise: Plant organs use gravity as a guide to direct their growth. And although gravitropism has been studied since the time of Darwin, the mechanisms of signal transduction, those that connect the biophysical stimulus perception and the biochemical events of the response, are still not understood.
Methods: A quantitative proteomics approach was used to identify key proteins during the early events of gravitropism.
Plant tropisms play a fundamental role in shaping the growth form of plants, and these fascinating movements are the focus of this thematic issue of the American Journal of Botany. The issue includes 16 reviews of the current literature and eight original manuscripts written by a diverse group of international experts in their respective fields. This special issue emphasizes tropistic responses to three fundamental stimuli governing plant growth: water, light, and gravity.
View Article and Find Full Text PDFA web-based microarray data analysis tool, ArrayOU (freely available at www.bioinformatics.plantbio.
View Article and Find Full Text PDFPlant shoots do not respond when they are reoriented relative to gravity at 4 degrees C. However, when returned to vertical at room temperature, these organs bend in response to the previous cold gravistimulation. The inflorescence stem of the Arabidopsis thaliana gravity persistent signal (gps) mutants respond abnormally after the cold gravistimulation: gps1 does not bend when returned to room temperature, gps2 bends the wrong way and gps3 over-responds, curving past the predicted angle.
View Article and Find Full Text PDFGravity plays a fundamental role in plant growth and development, yet little is understood about the early events of gravitropism. To identify genes affected in the signal perception and/or transduction phase of the gravity response, a mutant screen was devised using cold treatment to delay the gravity response of inflorescence stems of Arabidopsis. Inflorescence stems of Arabidopsis show no response to gravistimulation at 4 degrees C for up to 3 h.
View Article and Find Full Text PDFModulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum.
View Article and Find Full Text PDF