Chronic kidney disease (CKD) is common, costly, and life-limiting, requiring dialysis and transplantation in advanced stages. Although effective guideline-based therapy exists, the asymptomatic nature of CKD together with low health literacy, adverse social determinants of health, unmet behavioral health needs, and primary care providers' (PCP) limited understanding of CKD result in defects in screening and diagnosis. Care is fragmented between PCPs and specialty nephrologists, with limited time, expertise, and resources to address systemic gaps.
View Article and Find Full Text PDFSecondary phosphorylation develops in myocytes expressing phospho-mimetic cardiac troponin I (cTnI) but it is not known whether multiple substitutions (e.g. cTnISDTD and cTnIS4D) cause preferential phosphorylation of the remaining endogenous or the phospho-mimetic cTnI in intact myocytes.
View Article and Find Full Text PDFIncreased protein kinase C (PKC) activity is associated with heart failure, and can target multiple cardiac troponin I (cTnI) residues in myocytes, including S23/24, S43/45 and T144. In earlier studies, cTnI-S43D and/or -S45D augmented S23/24 and T144 phosphorylation, which suggested there is communication between clusters. This communication is now explored by evaluating the impact of phospho-mimetic cTnI S43/45D combined with S23/24D (cTnIS4D) or T144D (cTnISDTD).
View Article and Find Full Text PDFA phospho-null Ala substitution at protein kinase C (PKC)-targeted cardiac troponin I (cTnI) S43/45 reduces myocyte and cardiac contractile function. The goal of the current study was to test whether cTnIS43/45N is an alternative, functionally conservative substitution in cardiac myocytes. Partial and more extensive endogenous cTnI replacement was similar at 2 and 4 days after gene transfer, respectively, for epitope-tagged cTnI and cTnIS43/45N.
View Article and Find Full Text PDFTraditional methods for DNA transfection are often inefficient and toxic for terminally differentiated cells, such as cardiac myocytes. Vector-based gene transfer is an efficient approach for introducing exogenous cDNA into these types of primary cell cultures. In this chapter, separate protocols for adult rat cardiac myocyte isolation and gene transfer with recombinant adenovirus are provided and are routinely utilized for studying the effects of sarcomeric proteins on myofilament function.
View Article and Find Full Text PDFProtein kinase C (PKC) targets cardiac troponin I (cTnI) S43/45 for phosphorylation in addition to other residues. During heart failure, cTnI S43/45 phosphorylation is elevated, and yet there is ongoing debate about its functional role due, in part, to the emergence of complex phenotypes in animal models. The individual functional influences of phosphorylated S43 and S45 also are not yet known.
View Article and Find Full Text PDFElevated protein kinase C βII (PKCβII) expression develops during heart failure and yet the role of this isoform in modulating contractile function remains controversial. The present study examines the impact of agonist-induced PKCβII activation on contractile function in adult cardiac myocytes. Diminished contractile function develops in response to low dose phenylephrine (PHE, 100 nM) in controls, while function is preserved in response to PHE in PKCβII-expressing myocytes.
View Article and Find Full Text PDFPhosphorylation of cardiac troponin I serines 43/45 (cTnISer43/45) by protein kinase C (PKC) is associated with cardiac dysfunction and yet there is disagreement about the role this cluster plays in modulating contractile performance. The present study evaluates the impact of phospho-null Ala substitutions at Ser43/45 (cTnISer43/45Ala) on contractile performance in intact myocytes. Viral-based gene transfer of cardiac troponin I (cTnI) or cTnISer43/45Ala resulted in time-dependent increases in expression, with 70-80% of endogenous cTnI replaced within 4days.
View Article and Find Full Text PDF