Publications by authors named "Sarah E Hoey"

Indirect modulation of cholinergic activity by cholinesterase inhibition is currently a widely established symptomatic treatment for Alzheimer's disease (AD). Selective activation of certain muscarinic receptor subtypes has emerged as an alternative cholinergic-based amyloid-lowering strategy for AD, as selective muscarinic M1 receptor agonists can reduce amyloid-β (Aβ) production by shifting endoproteolytic amyloid-β protein precursor (AβPP) processing toward non-amyloidogenic pathways. In this study, we addressed the hypothesis that acute stimulation of muscarinic M1 receptors can inhibit Aβ production in awake and freely moving AβPP transgenic mice.

View Article and Find Full Text PDF

Soluble oligomeric amyloid β peptide (Aβ) generated from processing of the amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer's Disease (AD) and through actions at glutamatergic synapses affects excitability and plasticity. The physiological control of APP processing is not fully understood but stimulation of synaptic NMDA receptors (NMDAR) can suppress Aβ levels through an ERK-dependent increase in α-secretase activity. AMPA-type glutamate receptors (AMPAR) couple to ERK phosphorylation independently of NMDAR activation raising the possibility that stimulation of AMPAR might similarly promote non-amyloidogenic APP processing.

View Article and Find Full Text PDF

Notch signaling is an evolutionarily conserved pathway, which is fundamental for neuronal development and specification. In the last decade, increasing evidence has pointed out an important role of this pathway beyond embryonic development, indicating that Notch also displays a critical function in the mature brain of vertebrates and invertebrates. This pathway appears to be involved in neural progenitor regulation, neuronal connectivity, synaptic plasticity and learning/memory.

View Article and Find Full Text PDF

This is a study of the interaction between the two NMDA neurotransmitter receptor subtypes, NR1/NR2A and NR1/NR2B, and amyloid precursor protein (APP) 695, the major APP variant expressed in neurones. APP695 co-immunoprecipitated with assembled NR1-1a/NR2A and NR1-1a/NR2B NMDA receptors following expression in mammalian cells. Single NR1-1a, NR1-2a, NR1-4b(c-Myc), or NR2 subunit transfections revealed that co-association of APP695 with assembled NMDA receptors was mediated via the NR1 subunit; it was independent of the NR1 C1, C2, and C2' cassettes and, the use of an NR1-2a(c-Myc)-trafficking mutant suggested that interaction between the two proteins occurs in the endoplasmic reticulum.

View Article and Find Full Text PDF

Altered amyloid precursor protein (APP) processing leading to increased production and oligomerization of Abeta may contribute to Alzheimer's disease (AD). Understanding how APP processing is regulated under physiological conditions may provide new insights into AD pathogenesis. Recent reports demonstrate that excitatory neural activity regulates APP metabolism and Abeta levels, although understanding of the molecular mechanisms involved is incomplete.

View Article and Find Full Text PDF