Predicting the effects of climate change on species and communities remains a pre-eminent challenge for biologists. Critical among this is understanding the indirect effects of climate change, which arise when the direct, physiological effects of climate on one species change the outcome of its interaction with a second species, altering the success of the second species. A diverse array of approaches to predicting indirect effects exists from mechanistic models, which attempt to build-up from physiological changes to ecological consequences, to ecological models that focus solely on the ecological scale.
View Article and Find Full Text PDFAt a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present.
View Article and Find Full Text PDFAlthough some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species' abilities to shift ranges has important implications for assessing extinction risk and predicting future community structure. At an expanding front, colonization rates are determined jointly by rates of reproduction and dispersal.
View Article and Find Full Text PDFMost predictions about species responses to climate change ignore species interactions. Helland and colleagues (2011) test whether this assumption is valid by evaluating whether ice cover affects competition between brown trout [Salmo trutta (L.)] and Arctic charr [Salvelinus alpines (L.
View Article and Find Full Text PDFPredicting the impacts of climate change on species is one of the biggest challenges that ecologists face. Predictions routinely focus on the direct effects of climate change on individual species, yet interactions between species can strongly influence how climate change affects organisms at every scale by altering their individual fitness, geographic ranges and the structure and dynamics of their community. Failure to incorporate these interactions limits the ability to predict responses of species to climate change.
View Article and Find Full Text PDFPredicting when, where and with what magnitude climate change is likely to affect the fitness, abundance and distribution of organisms and the functioning of ecosystems has emerged as a high priority for scientists and resource managers. However, even in cases where we have detailed knowledge of current species' range boundaries, we often do not understand what, if any, aspects of weather and climate act to set these limits. This shortcoming significantly curtails our capacity to predict potential future range shifts in response to climate change, especially since the factors that set range boundaries under those novel conditions may be different from those that set limits today.
View Article and Find Full Text PDFGlobal climate change is expected to have broad ecological consequences for species and communities. Attempts to forecast these consequences usually assume that changes in air or water temperature will translate into equivalent changes in a species' organismal body temperature. This simple change is unlikely because an organism's body temperature is determined by a complex series of interactions between the organism and its environment.
View Article and Find Full Text PDFExperimental studies of biogeographic processes are important, but rarely attempted because of the logistical challenges of research at large spatial scales. I used a series of large-scale transplant experiments to investigate the mechanisms controlling species abundance near a poleward range boundary. The intertidal limpet Collisella scabra experiences a 100-fold decline in abundance over the northernmost 300 km of its range.
View Article and Find Full Text PDF