Publications by authors named "Sarah E Ehrlicher"

Background: Obesity is commonly aggregated with indices of metabolic health. Proponents of body positivity approaches question whether body size is a determinant of health and well-being. Our objective was to conduct an exploratory factor analysis (EFA) to determine if body size measurements factor load with or independent of metabolic health measures.

View Article and Find Full Text PDF

Elevated skeletal muscle diacylglycerols (DAGs) and ceramides can impair insulin signaling, and acylcarnitines (acylCNs) reflect impaired mitochondrial fatty acid oxidation, thus, the intramuscular lipid profile is indicative of insulin resistance. Acute (i.e.

View Article and Find Full Text PDF

Background: Bioelectrical impedance analysis (BIA) operates under the assumption that the conductor has a uniform cylindrical shape. However, this assumption may be violated if measures are taken in the seated position, especially in people with a high waist circumference (WC).

Aims: The aims of this research were to determine whether posture (supine, standing, and seated) and WC affect agreement between BIA and dual-energy X-ray absorptiometry (DXA) measures of fat mass (FM) and fat-free mass (FFM).

View Article and Find Full Text PDF

Aerobic training remodels the quantity and quality (function per unit) of skeletal muscle mitochondria to promote substrate oxidation, however, there remain key gaps in understanding the underlying mechanisms during initial training adaptations. We used short-term high-intensity interval training (HIIT) to determine changes to mitochondrial respiration and regulatory pathways that occur early in remodeling. Fifteen normal-weight sedentary adults started seven sessions of HIIT over 14 days and 14 participants completed the intervention.

View Article and Find Full Text PDF

High dietary fat intake induces significant whole-body and skeletal muscle adaptations in mice, including increased capacity for fat oxidation and mitochondrial biogenesis. The impact of a diet that is high in fat and simple sugars (i.e.

View Article and Find Full Text PDF

Both scientific evidence and popular diet trends have sought to identify the ideal diet for weight loss with strategies focused on either restricting carbohydrates or fat. While there is a strong physiologic rationale for either carbohydrate restriction or fat restriction to achieve a calorie deficit needed for weight loss, evidence from randomized controlled trials suggest either type of diet is effective for weight loss. The level of adherence, rather than macronutrient content, is the driver of successful weight loss.

View Article and Find Full Text PDF

Introduction: Skeletal muscle mitochondria have dynamic shifts in oxidative metabolism to meet energy demands of aerobic exercise. Specific complexes oxidize lipid and nonlipid substrates. It is unclear if aerobic exercise stimulates intrinsic oxidative metabolism of mitochondria or varies between substrates.

View Article and Find Full Text PDF

Lipid overload of the mitochondria is linked to the development of insulin resistance in skeletal muscle which may be a contributing factor to the progression of type 2 diabetes during obesity. The targeted degradation of mitochondria through autophagy, termed mitophagy, contributes to the mitochondrial adaptive response to changes in dietary fat. Our previous work demonstrates long-term (2-4 months) consumption of a high-fat diet increases mitochondrial lipid oxidation capacity but does not alter markers of mitophagy in mice.

View Article and Find Full Text PDF

Introduction: Evidence from model systems implicates long-chain acyl-coenzyme A synthetase (ACSL) as key regulators of skeletal muscle fat oxidation and fat storage; however, such roles remain underexplored in humans.

Purpose: We sought to determine the protein expression of ACSL isoforms in skeletal muscle at rest and in response to acute exercise and identify relationships between skeletal muscle ACSL and measures of fat metabolism in humans.

Methods: Sedentary adults (n = 14 [4 males and 10 females], body mass index = 22.

View Article and Find Full Text PDF

Understanding the mechanisms regulating mitochondrial respiratory function and adaptations to metabolic challenges, such as exercise and high dietary fat, is necessary to promote skeletal muscle health and attenuate metabolic disease. Autophagy is a constitutively active degradation pathway that promotes mitochondrial turnover and transiently increases postexercise. Recent evidence indicates Bcl2 mediates exercise-induced autophagy and skeletal muscle adaptions to training during high-fat diet.

View Article and Find Full Text PDF

Introduction: Long-chain acyl-CoA synthetases (ACSL) are implicated as regulators of oxidation and storage of fatty acids within skeletal muscle; however, to what extent diet and exercise alter skeletal muscle ACSL remains poorly understood.

Purpose: This study aimed to determine the effects of diet and exercise training on skeletal muscle ACSL and to examine relationships between ACSL1 and ACSL6 and fat oxidation and fat storage, respectively.

Methods: Male C57BL/6J mice consumed a 60% high-fat diet (HFD) for 12 wk to induce obesity compared with low-fat diet (LFD).

View Article and Find Full Text PDF

Background: Dietary nitrate improves exercise performance by reducing the oxygen cost of exercise, although the mechanisms responsible are not fully understood.

Objectives: We tested the hypothesis that nitrate and nitrite treatment would lower the oxygen cost of exercise by improving mitochondrial function and stimulating changes in the availability of metabolic fuels for energy production.

Methods: We treated 9-mo-old zebrafish with nitrate (sodium nitrate, 606.

View Article and Find Full Text PDF

Rat L6 and mouse C2C12 cell lines are commonly used to investigate myocellular metabolism. Mitochondrial characteristics of these cell lines remain poorly understood despite mitochondria being implicated in the development of various metabolic diseases. To address this need, we performed high-resolution respirometry to determine rates of oxygen consumption and HO emission in suspended myoblasts during multiple substrate-uncoupler-inhibitor titration protocols.

View Article and Find Full Text PDF

Ras-related C3 botulinum toxin substrate 1 (Rac1) is required for normal insulin-stimulated glucose transport in skeletal muscle and evidence indicates Rac1 may be negatively regulated by lipids. We investigated if insulin-stimulated activation of Rac1 (i.e.

View Article and Find Full Text PDF

Skeletal muscle autophagy is suppressed by insulin, but it is not clear if such suppression is altered with insulin resistance. We investigated if the inhibitory action of insulin on autophagy remains intact despite insulin resistance to glucose metabolism. C57BL/6J mice consumed either a low-fat (10% fat) diet as control or high-fat (60% fat) diet for 12 weeks to induce insulin resistance.

View Article and Find Full Text PDF

Maintaining proteostasis is a key mechanism for preserving cell function. Exercise-stimulated proteostasis is regulated, in part, by redox-sensitive signaling. Several studies suggest that supplementation with exogenous antioxidants blunts exercise-induced cellular adaptations, although this conclusion lacks consensus.

View Article and Find Full Text PDF

Excess fat intake can increase lipid oxidation and expression of mitochondrial proteins, indicating remodeling of the mitochondrial proteome. Yet intermediates of lipid oxidation also accumulate, indicating a relative insufficiency to completely oxidize lipids. We investigated remodeling of the mitochondrial proteome to determine mechanisms of changes in lipid oxidation following high-fat feeding.

View Article and Find Full Text PDF

Skeletal muscle mitochondrial protein synthesis is regulated in part by insulin. The development of insulin resistance with diet-induced obesity may therefore contribute to impairments to protein synthesis and decreased mitochondrial respiration. Yet the impact of diet-induced obesity and insulin resistance on mitochondrial energetics is controversial, with reports varying from decreases to increases in mitochondrial respiration.

View Article and Find Full Text PDF

Canis lupus familiaris, the domesticated dog, is capable of extreme endurance performance. The ability to perform sustained aerobic exercise is dependent on a well-developed mitochondrial reticulum. In this study we examined the cumulative muscle protein and DNA synthesis in groups of athletic dogs at the onset of an exercise training program and following a strenuous exercise training program.

View Article and Find Full Text PDF