Publications by authors named "Sarah E Dremel"

To globally profile circRNAs, we employ RNA-Sequencing paired with chimeric junction analysis for alpha-, beta-, and gamma-herpesvirus infection. We find circRNAs are, as a population, resistant to host shutoff. We validate this observation using ectopic expression assays of human and murine herpesvirus endoribonucleases.

View Article and Find Full Text PDF

A first line of defense during infection is expression of interferon (IFN)-stimulated gene products which suppress viral lytic infection. To combat this, herpesviruses express endoribonucleases to deplete host RNAs. Here we demonstrate that IFN-induced circular RNAs (circRNAs) can escape viral-mediated degradation.

View Article and Find Full Text PDF

Transfer RNAs (tRNAs) are at the heart of the molecular biology central dogma, functioning to decode messenger RNAs into proteins. As obligate intracellular parasites, viruses depend on the host translation machinery, including host tRNAs. Thus, the ability of a virus to fine-tune tRNA expression elicits the power to impact the outcome of infection.

View Article and Find Full Text PDF

During lytic replication, herpesviruses express their genes in a temporal cascade culminating in expression of "late" genes. Two subfamilies of herpesviruses, the beta- and gammaherpesviruses (including human herpesviruses cytomegalovirus, Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus), use a unique strategy to facilitate transcription of late genes. They encode six essential viral transcriptional activators (vTAs) that form a complex at a subset of late gene promoters.

View Article and Find Full Text PDF

RNA polymerase III (Pol III) transcribes noncoding RNA, including transfer RNA (tRNA), and is commonly targeted during cancer and viral infection. We find that Herpes Simplex Virus-1 (HSV-1) stimulates tRNA expression 10-fold. Perturbation of host tRNA synthesis requires nuclear viral entry, but not synthesis of specific viral transcripts.

View Article and Find Full Text PDF

Herpes simplex virus-1 (HSV-1) replicates within the nucleus coopting the host's RNA Polymerase II (Pol II) machinery for production of viral mRNAs culminating in host transcriptional shut off. The mechanism behind this rapid reprogramming of the host transcriptional environment is largely unknown. We identified ICP4 as responsible for preferential recruitment of the Pol II machinery to the viral genome.

View Article and Find Full Text PDF

In herpes simplex virus type 1 (HSV-1) infection, the coupling of genome replication and transcription regulation has been known for many years; however, the underlying mechanism has not been elucidated. We performed a comprehensive transcriptomic assessment and factor-binding analysis for Pol II, TBP, TAF1, and Sp1 to assess the effect genome replication has on viral transcription initiation and elongation. The onset of genome replication resulted in the binding of TBP, TAF1, and Pol II to previously silent late promoters.

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) infects over half the human population. Much of the infectious cycle occurs in the nucleus of cells where the virus has evolved mechanisms to manipulate host processes for the production of virus. The genome of HSV-1 is coordinately expressed, maintained, and replicated such that progeny virions are produced within 4-6 hours post infection.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvm8549flp8lg49n1i8u835arpejdt554): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once