Publications by authors named "Sarah E Dowdell"

Transient Receptor Potential Vanilloid 4 (TRPV4) is a member of the Transient Receptor Potential (TRP) superfamily of cation channels. TRPV4 is expressed in the vascular endothelium in the lung and regulates the integrity of the alveolar septal barrier. Increased pulmonary vascular pressure evokes TRPV4-dependent pulmonary edema, and therefore, inhibition of TRPV4 represents a novel approach for the treatment of pulmonary edema associated with conditions such as congestive heart failure.

View Article and Find Full Text PDF

A series of biarylsulfonamides was identified as hCCR2 receptor antagonist but suffered from high plasma protein binding resulting in a >100 fold shift in activity in a functional GTPγS assay run in tandem in the presence and absence of human serum albumin. Introduction of an aryl amide with ethylenediamine linker led to compounds with reduced shifts and improved activity in whole blood.

View Article and Find Full Text PDF

Endothelial lipase (EL) activity has been implicated in HDL catabolism, vascular inflammation, and atherogenesis, and inhibitors are therefore expected to be useful for the treatment of cardiovascular disease. Sulfonylfuran urea 1 was identified in a high-throughput screening campaign as a potent and non-selective EL inhibitor. A lead optimization effort was undertaken to improve potency and selectivity, and modifications leading to improved LPL selectivity were identified.

View Article and Find Full Text PDF

Recent studies using known Rho-associated kinase isoform 1 (ROCK1) inhibitors along with cellular and molecular biology data have revealed a pivotal role of this enzyme in many aspects of cardiovascular function. Here we report a series of ROCK1 inhibitors which were originally derived from a dihydropyrimidinone core 1. Our efforts focused on the optimization of dihydropyrimidine 2, which resulted in the identification of a series of dihydropyrimidines with improved pharmacokinetics and P450 properties.

View Article and Find Full Text PDF

Aminomethylpiperazines, reported previously as being kappa-opioid receptor agonists, were identified as lead compounds in the development of selective urotensin receptor antagonists. Optimized substitution of the piperazine moiety has provided high affinity urotensin receptor antagonists with greater than 100-fold selectivity over the kappa-opioid receptor. Select compounds were found to inhibit urotensin-induced vasoconstriction in isolated rat aortic rings consistent with the hypothesis that an urotensin antagonist may be useful for the treatment of hypertension.

View Article and Find Full Text PDF

Lead compound 1 was successfully redesigned to provide compounds with improved pharmacokinetic profiles for this series of human urotensin-II antagonists. Replacement of the 2-pyrrolidinylmethyl-3-phenyl-piperidine core of 1 with a substituted N-methyl-2-(1-pyrrolidinyl)ethanamine core as in compound 7 resulted in compounds with improved oral bioavailability in rats. The relationship between stereochemistry and selectivity for hUT over the kappa-opioid receptor was also explored.

View Article and Find Full Text PDF

This work describes the development of potent and selective human Urotensin-II receptor antagonists starting from lead compound 1, (3,4-dichlorophenyl)methyl{2-oxo-2-[3-phenyl-2-(1-pyrrolidinylmethyl)-1-piperidinyl]ethyl}amine. Several problems relating to oral bioavailability, cytochrome P450 inhibition, and off-target activity at the kappa opioid receptor and cardiac sodium channel were addressed during lead development. hUT binding affinity relative to compound 1 was improved by more than 40-fold in some analogs, and a structural modification was identified which significantly attenuated both off-target activities.

View Article and Find Full Text PDF

Rho kinase (ROCK1) mediates vascular smooth muscle contraction and is a potential target for the treatment of hypertension and related disorders. Indazole amide 3 was identified as a potent and selective ROCK1 inhibitor but possessed poor oral bioavailability. Optimization of this lead resulted in the discovery of a series of dihydropyridones, exemplified by 13, with improved pharmacokinetic parameters relative to the initial lead.

View Article and Find Full Text PDF

The discovery, proposed binding mode, and optimization of a novel class of Rho-kinase inhibitors are presented. Appropriate substitution on the 6-position of the azabenzimidazole core provided subnanomolar enzyme potency in vitro while dramatically improving selectivity over a panel of other kinases. Pharmacokinetic data was obtained for the most potent and selective examples and one (6n) has been shown to lower blood pressure in a rat model of hypertension.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8d85k5eudq1rhi71arsh8pd879u3jj1r): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once