Transdisciplinary solutions are needed to achieve the sustainability of ecosystem services for future generations. We propose a framework to identify the causes of ecosystem function loss and to forecast the future of ecosystem services under different climate and pollution scenarios. The framework (i) applies an artificial intelligence (AI) time-series analysis to identify relationships among environmental change, biodiversity dynamics and ecosystem functions; (ii) validates relationships between loss of biodiversity and environmental change in fabricated ecosystems; and (iii) forecasts the likely future of ecosystem services and their socioeconomic impact under different pollution and climate scenarios.
View Article and Find Full Text PDFWhile it is well recognized that the frequency and intensity of flood events are increasing worldwide, the environmental, economic, and societal consequences of remobilization and distribution of pollutants during flood events are not widely recognized. Loss of life, damage to infrastructure, and monetary cleanup costs associated with floods are important direct effects. However, there is a lack of attention towards the indirect effects of pollutants that are remobilized and redistributed during such catastrophic flood events, particularly considering the known toxic effects of substances present in flood-prone areas.
View Article and Find Full Text PDFNumerous environmental pollutants have the potential to accumulate in sediments, and among them are endocrine-disrupting chemicals (EDCs). It is well documented that water-borne exposure concentrations of some potent EDCs, more specifically estrogenic- active compounds (ECs), can impair the reproduction of fish. In contrast, little is known about the bioavailability and effects of sediment-associated ECs on fish.
View Article and Find Full Text PDFMetabolism has to be considered during the toxicological assessment of chemical and environmental samples because it is an important process in the mammalian liver. It can be assessed in vitro via liver homogenates called S9-fractions, an external metabolic activation system. However, the external metabolic activation systems can vary greatly in their composition due to biological variations among individual animals and animal strains that the S9-fraction are derived as well as the differences in the production treatment.
View Article and Find Full Text PDFThis study presents a high-throughput (HTP) micronucleus assay in multi-well plates with an automated evaluation for risk assessment applications. The evaluation of genotoxicity via the micronucleus assays according to international guidelines ISO 21427-2 with Chinese hamster (Cricetulus griseus) V79 cells was the starting point to develop our methodology. A drawback of this assay is that it is very time consuming and cost intensive.
View Article and Find Full Text PDFLittle is known about sediment-bound exposure of fish to endocrine disrupting chemicals (EDC) under field conditions. This study aimed to investigate potential routes of EDC exposure to fish and whether sediment-bound contaminants contribute towards exposure in fish. Tench (Tinca tinca) and roach (Rutilus rutilus) as a benthic and pelagic living fish species, respectively, were sampled at the Luppe River, previously described as a "hotspot" for accumulation of EDC in sediment.
View Article and Find Full Text PDFStudies worldwide have demonstrated through in vitro bioassays and chemical analysis that endocrine-disrupting chemicals (EDCs) can accumulate in river sediments. However, remobilization of sediment-bound EDCs due to bioturbation or re-suspension during flood events remains poorly understood. The aim of this study was to evaluate the bioavailability of EDCs, more specifically estrogenic compounds (EC), from sediment under turbulent conditions using a passive sampling approach.
View Article and Find Full Text PDFCyanobacterial blooms are of global concern due to the multiple harmful risks they pose towards aquatic ecosystem and human health. However, information on the fate of organic pollutants mediated by cyanobacterial blooms in eutrophic water remains elusive. In the present study, endocrine disruptive potentials of phytoplankton samples were evaluated throughout a year-long surveillance in a large and eutrophic freshwater lake.
View Article and Find Full Text PDFMicroplastics have become one of the most pervasive emerging pollutants in the marine environment because of their wide occurrence and high sorption ability for hydrophobic organic contaminants (HOCs). Among the associated HOCs, dioxin-like chemicals (DLCs) can pose severe health risks; however, information on effects of microplastics bound DLCs is lacking. To fill this knowledge gap, this study integrated chemical analysis and in vitro bioassays to elucidate the potential dioxin-like effects of microplastics bound DLCs.
View Article and Find Full Text PDFIn the present study, both bioanalytical and instrumental tools were employed to examine the endocrine-disruptive potentials of water samples, cyanobloom samples, and sediment samples collected from in the northern region of Taihu Lake (China) during cyanobloom season. Results from cell-based bioassays suggested the occurrence of estrogenic, anti-estrogenic, anti-androgenic, and anti-glucocorticogenic activities, while no androgenic and glucocorticogenic activities were observed in the collected samples. Using an UPLC-MS/MS system, 29 endocrine disrupting compounds including seven estrogens, seven androgens, six progestogens, and five adrenocortical hormones and four industrial pollutants were simultaneously detected.
View Article and Find Full Text PDFPurpose: To present a case series of patients who were unable to lie flat for cataract surgery.
Setting: University teaching hospital, district hospital, and private practice, Norwich, United Kingdom.
Design: Prospective case series.
Lake ecosystems are sensitive recorders of environmental changes that provide continuous archives at annual to decadal resolution over thousands of years. The systematic investigation of land use changes and emission of pollutants archived in Holocene lake sediments as well as the reconstruction of contamination, background conditions, and sensitivity of lake systems offer an ideal opportunity to study environmental dynamics and consequences of anthropogenic impact that increasingly pose risks to human well-being. This paper discusses the use of sediment and other lines of evidence in providing a record of historical and current contamination in lake ecosystems.
View Article and Find Full Text PDFEffect-based methods including cell-based bioassays, reporter gene assays and whole-organism assays have been applied for decades in water quality monitoring and testing of enriched solid-phase extracts. There is no common EU-wide agreement on what level of bioassay response in water extracts is acceptable. At present, bioassay results are only benchmarked against each other but not against a consented measure of chemical water quality.
View Article and Find Full Text PDFAssessment of uranium (U)-contaminated sediment is often hindered by the inability to accurately account for the physicochemical properties of sediment that modify U bioavailability. The present goal was to determine whether sediment-associated U bioavailability could be predicted over a wide range of conditions and sediment properties using simple regressions and a geochemical speciation model, the Windermere Humic Aqueous Model (WHAM7). Data from a U-contaminated field sediment bioaccumulation test, along with previously published bioaccumulation studies with U-spiked field and formulated sediments, were used to examine the models.
View Article and Find Full Text PDFProtecting our water resources in terms of quality and quantity is considered one of the big challenges of the twenty-first century, which requires global and multidisciplinary solutions. A specific threat to water resources, in particular, is the increased occurrence and frequency of flood events due to climate change which has significant environmental and socioeconomic impacts. In addition to climate change, flooding (or subsequent erosion and run-off) may be exacerbated by, or result from, land use activities, obstruction of waterways, or urbanization of floodplains, as well as mining and other anthropogenic activities that alter natural flow regimes.
View Article and Find Full Text PDFGreen Toxicology refers to the application of predictive toxicology in the sustainable development and production of new less harmful materials and chemicals, subsequently reducing waste and exposure. Built upon the foundation of "Green Chemistry" and "Green Engineering", "Green Toxicology" aims to shape future manufacturing processes and safe synthesis of chemicals in terms of environmental and human health impacts. Being an integral part of Green Chemistry, the principles of Green Toxicology amplify the role of health-related aspects for the benefit of consumers and the environment, in addition to being economical for manufacturing companies.
View Article and Find Full Text PDFUranium (U) can enter aquatic environments from natural and anthropogenic processes, accumulating in sediments to concentrations that could, if bioavailable, adversely affect benthic organisms. To better predict the sorption and mobility of U in aquatic ecosystems, we investigated the sediment-solution partition coefficients (K) of U for nine uncontaminated freshwater sediments with a wide range of physicochemical characteristics over an environmentally relevant pH range. Test solutions were reconstituted to mimic water quality conditions and U(VI) concentrations (0.
View Article and Find Full Text PDFThe partitioning of metals between dissolved and solid phases directly affects metal bioavailability to benthic invertebrates and is influenced by metal-binding properties of sediment phases. Little research has been done examining the effects of sediment properties on the bioavailability of uranium (U) to freshwater benthic invertebrates. In the present study, 18 field sediments with a wide range of properties (total organic carbon, fine fraction, cation exchange capacity, and iron content) were amended with the same concentrations of U to characterize the effects of these sediment properties on U bioavailability to freshwater midge, Chironomus dilutus.
View Article and Find Full Text PDFIt is well established that bioavailability influences metal toxicity in aquatic ecosystems. However, the factors and mechanisms that influence uranium (U) bioavailability and toxicity in sediment have not been thoroughly evaluated, despite evidence that suggests different sediment components can influence the sorption and interaction of some metals. Given that dissolved U is generally accepted as being the primary bioavailable fraction of U, it is hypothesized that adsorption and interaction of U with different sediment components will influence the bioavailability of U in sediment.
View Article and Find Full Text PDF