The microtubule (MT)-depolymerizing activity of MCAK/Kif2C can be quantified by expressing the motor in cultured cells and measuring tubulin fluorescence levels after enough hours have passed to allow tubulin autoregulation to proceed. This method allows us to score the impact of point mutations within the motor domain. We found that, despite their distinctly different activities, many mutations that impact transport kinesins also impair MCAK/Kif2C's depolymerizing activity.
View Article and Find Full Text PDFUnfolded protein response (UPR) is the primary signaling network activated in response to the accumulation of unfolded and/or misfolded protein in the endoplasmic reticulum (ER). The expression of high levels of recombinant proteins in mammalian cell cultures has been linked to the increased UPR. However, the dynamics of different UPR-mediated events and their impact on cell performance and recombinant protein secretion during production remain poorly defined.
View Article and Find Full Text PDFMitotic centromere-associated kinesin (MCAK) is a microtubule-depolymerizing kinesin-13 member that can track with polymerizing microtubule tips (hereafter referred to as tip tracking) during both interphase and mitosis. MCAK tracks with microtubule tips by binding to end-binding proteins (EBs) through the microtubule tip localization signal SKIP, which lies N terminal to MCAK's neck and motor domain. The functional significance of MCAK's tip-tracking behavior during mitosis has never been explained.
View Article and Find Full Text PDFThe kinesin-13 motor protein family members drive the removal of tubulin from microtubules (MTs) to promote MT turnover. A point mutation of the kinesin-13 family member mitotic centromere-associated kinesin/Kif2C (E491A) isolates the tubulin-removal conformation of the motor, and appears distinct from all previously described kinesin-13 conformations derived from nucleotide analogues. The E491A mutant removes tubulin dimers from stabilized MTs stoichiometrically in adenosine triphosphate (ATP) but is unable to efficiently release from detached tubulin dimers to recycle catalytically.
View Article and Find Full Text PDFCellular microtubules are rigid in comparison to other cytoskeletal elements (1,2). To facilitate cytoplasmic remodeling and timely responses to cell signaling events, microtubules depolymerize and repolymerize rapidly at their ends (3). These dynamic properties are critically important for many cellular functions, such as spindle assembly, the capture and segregation of chromosomes during cell division and cell motility.
View Article and Find Full Text PDFCerebral amyloid angiopathy (CAA), the deposition of cerebrovascular beta-amyloid (Abeta) in the walls of arterial vessels, has been implicated in hemorrhagic stroke and is present in most cases of Alzheimer disease. Previous studies of the progression of CAA in humans and animal models have been limited to the comparison of pathological tissue from different brains at single time points. Our objective was to visualize in real time the initiation and progression of CAA in Tg2576 mice by multiphoton microscopy through cranial windows.
View Article and Find Full Text PDFCerebral amyloid angiopathy (CAA), the deposition of beta-amyloid (Abeta3) in cerebral vessels, has been implicated as a common cause of hemorrhagic stroke and other forms of vascular disease. CAA is also a frequent concomitant of Alzheimer disease (AD). While the longterm consequences of CAA are well recognized from clinical and pathologic studies, numerous questions remain unanswered regarding the progression of the disease.
View Article and Find Full Text PDFAmyloid beta-peptide (Abeta) accumulation in specific brain regions is a pathological hallmark of Alzheimer's disease (AD). We have previously reported that a well-characterized acyl-coenzyme A: cholesterol acyltransferase (ACAT) inhibitor, CP-113,818, inhibits Abeta production in cell-based experiments. Here, we assessed the efficacy of CP-113,818 in reducing AD-like pathology in the brains of transgenic mice expressing human APP(751) containing the London (V717I) and Swedish (K670M/N671L) mutations.
View Article and Find Full Text PDF