Rationale: Exposure to stressors promotes ethanol (EtOH) consumption and enhances drug craving during abstinence. Corticotropin-releasing factor (CRF), and in particular, CRF actions via type 1 CRF receptors (CRF(1)) are critical in behavioral responses to stressors. CRF(1) play a role in EtOH-induced behavioral neuroadaptation, in binge-like EtOH consumption, and in heightened EtOH consumption in dependent animals.
View Article and Find Full Text PDFThe purpose of this investigation was to identify whether physiological exercise intensity differed with the use of aquatic training shoes (ATS) during deep-water running (DWR) compared to using a barefoot condition. Eight male intercollegiate (National Collegiate Athletic Association Division III [NCAA III]) varsity distance runners were videotaped from the right sagittal view while running on a treadmill (TR) and while barefoot in deep water at 60-70% of their TR VO2max for 30 minutes. Based on the stride rate of the barefoot DWR trial, a subsequent 30-minute session was completed while wearing ATS.
View Article and Find Full Text PDFBackground: Developmental stressors are consistently reported to increase risk for certain neuropsychiatric disorders including schizophrenia, depression, and post-traumatic stress disorder. Recent clinical evidence supports a "double-hit" hypothesis of genetic vulnerability interacting with developmental challenges to modulate this risk. Early life stressor effects on behavior may be modulated in part by alterations in corticotropin releasing factor (CRF) signaling via two known receptors, CRF(1) and CRF(2).
View Article and Find Full Text PDFPost-weaning social isolation of rodents is used to model developmental stressors linked to neuropsychiatric disorders including schizophrenia as well as anxiety and mood disorders. Isolation rearing produces alterations in emotional memory and hippocampal neuropathology. Corticotropin releasing factor (CRF) signaling has recently been shown to be involved in behavioral effects of isolation rearing.
View Article and Find Full Text PDFCorticotropin-releasing factor (CRF) peptides and their receptors have crucial roles in behavioral and endocrine responses to stress. Dysregulation of CRF signaling has been linked to post-traumatic stress disorder, which is associated with increased startle reactivity in response to threat. Thus, understanding the mechanisms underlying CRF regulation of startle may identify pathways involved in this disorder.
View Article and Find Full Text PDFA common expression of neuroadaptations induced by repeated exposure to addictive drugs is a persistent sensitized behavioral response to their stimulant properties. Neuroplasticity underlying drug-induced sensitization has been proposed to explain compulsive drug pursuit and consumption characteristic of addiction. The hypothalamic-pituitary-adrenal (HPA) axis-activating neuropeptide, corticotropin-releasing factor (CRF), may be the keystone in drug-induced neuroadaptation.
View Article and Find Full Text PDFLipopolysaccharide (LPS) preconditioning provides neuroprotection against subsequent cerebral ischemic injury. Tumor necrosis factor-alpha (TNFalpha) is protective in LPS-induced preconditioning yet exacerbates neuronal injury in ischemia. Here, we define dual roles of TNFalpha in LPS-induced ischemic tolerance in a murine model of stroke and in primary neuronal cultures in vitro, and show that the cytotoxic effects of TNFalpha are attenuated by LPS preconditioning.
View Article and Find Full Text PDFDespite important health benefits, the presence of depressive symptoms may decrease the prevalence of breastfeeding. The current study assessed the relationship between depressive symptoms and breastfeeding at 6 and 12 weeks postpartum. Participants were recruited from a cohort completing a clinical trial of calcium for prevention of preeclampsia.
View Article and Find Full Text PDFBackground: Stress is believed to influence alcohol use and relapse in alcoholics. Animal studies suggest an interaction between corticotropin-releasing factor (CRF) and its receptors and the behavioral effects and consumption of alcohol. The objective of these studies was to examine the effect of corticotropin-releasing factor receptor type 2 (CRF2) on ethanol consumption, conditioned taste aversion, sedation, and hypothermia.
View Article and Find Full Text PDFRationale: Corticotropin-releasing factor (CRF) may play a significant role in drug and alcohol abuse.
Objective: To evaluate the role of CRF in these processes, we examined several ethanol (EtOH) related behaviors in mice that carry a transgene that causes overexpression of CRF.
Methods: We examined voluntary EtOH drinking, loss of the righting reflex (LORR), EtOH-induced conditioned taste aversion (CTA), and EtOH clearance in littermate transgenic (TG) and non-transgenic (non-TG) mice.
Background: The current study examined the relationship between calcium supplementation during pregnancy and blood pressure (BP) in the mother and offspring at 3 months and at 2 years postpartum.
Methods: Nulliparous pregnant women were assigned to either receive 2 g of calcium or placebo daily beginning between weeks 13 to 21 of gestation and continuing until delivery. Blood pressure was measured in children and their mothers at 3 months (n = 260) and (n = 57) at 2 years postpartum.
Two receptors activated by the corticotropin-releasing factor (CRF) family of peptides have been identified, the CRF 1 receptor (CRF1R) and the CRF 2 receptor (CRF2R). Of these, the CRF2R is expressed in skeletal muscle. To understand the role of the CRF2R in skeletal muscle, we utilized CRFR knockout mice and CRF2R-selective agonists to modulate nerve damage and corticosteroid- and disuse-induced skeletal muscle atrophy in mice.
View Article and Find Full Text PDFSince its discovery 2 decades ago, potent effects of corticotropin-releasing hormone (CRH) on the heart and vasculature have been consistently observed. The recent discoveries of novel CRH-related peptides residing in the heart and a distinct cardiac CRH receptor (CRH-R2), have renewed interest in the role of the CRH family on cardiovascular function. This review highlights the emerging view of a peripheral, cardiac CRH system and its potential relevance in mediating the adaptive response of the heart to stress.
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 2002
Ground studies indicate that spaceflight may diminish vascular contraction. To examine that possibility, vascular function was measured in spontaneously hypertensive rats immediately after an 18-day shuttle flight. Isolated mesenteric resistance arterial responses to cumulative additions of norepinephrine, acetylcholine, and sodium nitroprusside were measured using wire myography within 17 h of landing.
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 2002
To determine the influence of dietary calcium on spaceflight-induced alterations in calcium metabolism and blood pressure (BP), 9-wk-old spontaneously hypertensive rats, fed either high- (2%) or low-calcium (0.02%) diets, were flown on an 18-day shuttle flight. On landing, flight animals had increased ionized calcium (P < 0.
View Article and Find Full Text PDF