Social organization, dispersal and fecundity coevolve, but whether they are genetically linked remains little known. Supergenes are prime candidates for coupling adaptive traits and mediating sex-specific trade-offs. Here, we test whether a supergene that controls social structure in also influences dispersal-related traits and fecundity within each sex.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
October 2019
Mating induces a range of physiological changes in female insects. In species that mate during several reproductive bouts throughout their life, mating causes an increase in oviposition, affects immune function, and decreases female lifespan and receptivity to further mating. Social Hymenoptera (ants, social bees, and wasps) are unique, since queens mate during a single reproductive effort at the beginning of their life.
View Article and Find Full Text PDFAnt queens mate on a single occasion early in life and store millions of sperm cells in their spermatheca. By carefully using stored sperm to fertilize eggs, they can produce large colonies of thousands of individuals. Queens can live for decades and their lifetime reproductive success is dependent on their ability to keep stored sperm alive.
View Article and Find Full Text PDFLeaf-cutting ant queens mate with multiple males during a single nuptial flight and store sperm for up to two decades. During mating, males transfer sperm from their accessory testes to the queen bursa copulatrix from where it enters the spermatheca, an insect sperm storage organ that has become highly specialized in long-lived ant queens who never re-mate later in life. Long-term storage without the possibility to obtain new sperm creates an immune defence dilemma, because recognition of non-self cells eliminates infections but may also target irreplaceable sperm and reduce lifetime reproductive success.
View Article and Find Full Text PDFIn vertebrates and invertebrates, oxytocin/vasopressin-like peptides modulate a variety of behaviors. The recent discovery of the gene and receptor sequences of inotocin, the insect ortholog of oxytocin/vasopressin, opens new opportunities for understanding the role of this peptide family in regulating behaviors in the most populated class of living animals. Ants live in highly organized colonies.
View Article and Find Full Text PDFThe prophenoloxidase system (proPO-AS) is a primordial constituent of insect innate immunity. Its broad action spectrum, rapid response time, and cytotoxic by-products induced by phenoloxidase (PO) production contribute to the effective clearing of invading pathogens. However, such immune reactions may not be optimal for insect organs that evolved to have mutualistic interactions with non-self-cells.
View Article and Find Full Text PDF