Publications by authors named "Sarah Ch'ng"

The insular cortex is a multifunctional and richly connected region of the cerebral cortex, critical in the neural integration of external stimuli and internal signals. Well-served for this role by a large network of afferent and efferent connections, the mouse insula can be simplified into an anterior, medial and posterior portion. Here we focus on the medial subregion, a once over-looked area that has gained recent attention for its involvement in an array of behaviours.

View Article and Find Full Text PDF

Fear-related psychopathologies, such as post-traumatic stress disorder, are linked to dysfunction in neural circuits that govern fear memory and arousal. The lateral hypothalamus (LH) and zona incerta (ZI) regulate fear, but our understanding of the precise neural circuits and cell types involved remains limited. Here, we examined the role of relaxin family peptide receptor 3 (RXFP3) expressing cells in the LH/ZI in conditioned fear expression and general arousal in male RXFP3-Cre mice.

View Article and Find Full Text PDF

Relaxin-family peptide 3 receptor (RXFP3) is activated by relaxin-3 in the brain to influence arousal and related functions, such as feeding and stress responses. Two transgenic mouse lines have recently been developed that co-express different fluorophores within RXFP3-expressing neurons: either yellow fluorescent protein (YFP; RXFP3-Cre/YFP mice) or tdTomato (RXFP3-Cre/tdTomato mice). To date, the characteristics of neurons that express RXFP3-associated fluorophores in these mice have only been investigated in the bed nucleus of the stria terminalis and the hypothalamic arcuate nucleus.

View Article and Find Full Text PDF

The neuropeptide cocaine- and amphetamine-regulated transcript (CART) has been implicated in alcohol consumption and reward behaviours, yet mechanisms mediating these effects have yet to be identified. Using a transgenic CART knockout (KO) mouse line we uncovered a sexually dimorphic effect of CART in binge drinking, with male CART KO mice increasing intake, whilst female CART KO mice decreased their alcohol intake compared to controls. Female CART KO mice show greater sensitivity to bitter solutions that can be overshadowed through addition of a sweetener, implicating taste as a factor.

View Article and Find Full Text PDF

The central nucleus of the amygdala (CeA) is a key hub integrating sensory inputs and modulating behavioural outputs. The CeA is a complex structure with discrete subdivisions, high peptidergic heterogeneity and broad CNS afferent and efferent projections. While several neuropeptide systems within the CeA have been examined in detail, less is known about CeA preproenkephalin (ppENK) cells.

View Article and Find Full Text PDF

RXFP3 (relaxin-family peptide 3 receptor) is the cognate G-protein-coupled receptor for the neuropeptide, relaxin-3. RXFP3 is expressed widely throughout the brain, including the hypothalamus, where it has been shown to modulate feeding behavior and neuroendocrine activity in rodents. In order to better characterize its potential mechanisms of action, this study determined whether RXFP3 is expressed by dopaminergic neurons within the arcuate nucleus (ARC) and dorsomedial hypothalamus (DMH), in addition to the ventral tegmental area (VTA).

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how the absence of ovarian hormones affects muscarinic receptor function and prepulse inhibition (PPI), a measure linked to schizophrenia, using ovariectomized and sham-operated female rats.
  • - PPI tests showed no significant differences between the two groups after treatments with saline or scopolamine, indicating that ovarian hormone removal did not affect sensorimotor gating.
  • - Additionally, analysis of muscarinic receptor density in various brain regions (like the amygdala and hippocampus) revealed no group differences, suggesting that ovarian hormones do not play a crucial role in the cholinergic muscarinic receptor system regarding PPI.
View Article and Find Full Text PDF

Overeating is a major contributing factor to obesity and related health complications. For women, in particular, negative emotions such as stress strongly influence eating behavior and bingeing episodes. Modeling this type of binge eating in rodents presents challenges: firstly, stress-induced anorexia is commonly observed in rodents therefore a mild stressor is required in order to observe an orexigenic effect.

View Article and Find Full Text PDF

Salt overconsumption contributes to hypertension, which is a major risk factor for stroke, heart and kidney disease. Characterising neuronal pathways that may control salt consumption is therefore important for developing novel approaches for reducing salt overconsumption. Here, we identify neurons within the mouse central amygdala (CeA), lateral parabrachial nucleus (LPBN), intermediate nucleus of the solitary tract (iNTS), and caudal NTS (cNTS) that are activated and display Fos immunoreactivity in mice that have consumed salt in order to restore a salt debt, relative to salt replete and salt depleted controls.

View Article and Find Full Text PDF

The bed nucleus of the stria terminalis (BNST) is a critical node involved in stress and reward-related behaviors. Relaxin family peptide receptor 3 (RXFP3) signaling in the BNST has been implicated in stress-induced alcohol seeking behavior. However, the neurochemical phenotype and connectivity of BNST RXFP3-expressing (RXFP3+) cells have yet to be elucidated.

View Article and Find Full Text PDF

Metabolic feedback from the periphery to the brain results from a dynamic physiologic fluctuation of nutrients and hormones, including glucose and fatty acids, ghrelin, leptin, and insulin. The specific interactions between humoral factors and how they influence feeding is largely unknown. We hypothesized that acute glucose availability may alter how the brain responds to ghrelin, a hormonal signal of energy availability.

View Article and Find Full Text PDF

To maintain sodium homeostasis, animals will readily seek and ingest salt when salt-depleted, even at concentrations that they typically find aversive when sodium replete. This innate behaviour is known as sodium (or salt) appetite. Salt appetite is subserved by a conserved brain network that senses sodium need and promotes the ingestion of salty substances when sodium-deficient.

View Article and Find Full Text PDF

Introduction: Alcohol use disorders (AUDs) are one of the leading causes of preventable death in the developed world. In the U.S.

View Article and Find Full Text PDF

The bed nucleus of the stria terminalis (BNST) is widely acknowledged as a brain structure that regulates stress and anxiety states, as well as aversive and appetitive behaviours. The diverse roles of the BNST are afforded by its highly modular organisation, neurochemical heterogeneity, and complex intrinsic and extrinsic circuitry. There has been growing interest in the BNST in relation to psychopathologies such as anxiety and addiction.

View Article and Find Full Text PDF

We have utilised a transgenic reporter mouse in which green fluorescent protein (GFP) expression is driven by the orexin-1 receptor (OX1R) promoter to systematically map the distribution of OX1R-expressing neurons throughout the mouse forebrain and rostral brainstem. GFP labelling was observed in perikarya and fibres in an extensive range of brain loci encompassing the olfactory and cerebral cortices, dorsal and ventral pallidum, hippocampus, amygdaloid regions, septal areas, thalamic nuclei, hypothalamic nuclei and several brainstem regions, consistent with previous studies of OX1R mRNA expression. This is the first study to systematically characterise the neuroanatomical distribution of OX1R in the OX1R-eGFP mouse, confirming its veracity as a faithful reporter of OX1R expression and utility for future studies assessing the role of OX1R in more complex behaviours.

View Article and Find Full Text PDF