Publications by authors named "Sarah Calaghan"

This study aimed to identify a mechanism for statin-induced myopathy that explains its prevalence and selectivity for skeletal muscle, and to understand its interaction with moderate exercise. Statin-associated adverse muscle symptoms reduce adherence to statin therapy; this limits the effectiveness of statins in reducing cardiovascular risk. The issue is further compounded by perceived interactions between statin treatment and exercise.

View Article and Find Full Text PDF

Right heart failure is the major cause of death in Pulmonary Artery Hypertension (PAH) patients but is not a current, specific therapeutic target. Pre-clinical studies have shown that adrenoceptor blockade can improve cardiac function but the mechanisms of action within right ventricular (RV) myocytes are unknown. We tested whether the β-adrenoceptor blocker metoprolol could improve RV myocyte function in an animal model of PAH, by attenuating adverse excitation-contraction coupling remodeling.

View Article and Find Full Text PDF

Background And Purpose: Statins are amongst the most widely prescribed drugs for those at risk of cardiovascular disease, lowering cholesterol levels by inhibiting 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase. Although effective at preventing cardiovascular disease, statin use is associated with muscle weakness, myopathies and, occasionally, fatal rhabdomyolysis. As simvastatin, a commonly prescribed statin, promotes Ca release from sarcoplasmic reticulum (SR) vesicles, we investigated if simvastatin directly activates skeletal (RyR1) and cardiac (RyR2) ryanodine receptors.

View Article and Find Full Text PDF

Caveolae are signal transduction centers, yet their subcellular distribution and preservation in cardiac myocytes after cell isolation are not well documented. Here, we quantify caveolae located within 100 nm of the outer cell surface membrane in rabbit single-ventricular cardiomyocytes over 8 h post-isolation and relate this to the presence of caveolae in intact tissue. Hearts from New Zealand white rabbits were either chemically fixed by coronary perfusion or enzymatically digested to isolate ventricular myocytes, which were subsequently fixed at 0, 3, and 8 h post-isolation.

View Article and Find Full Text PDF

Mammalian biology adapts to physical activity but the molecular mechanisms sensing the activity remain enigmatic. Recent studies have revealed how Piezo1 protein senses mechanical force to enable vascular development. Here, we address Piezo1 in adult endothelium, the major control site in physical activity.

View Article and Find Full Text PDF

The number of people taking statins is set to increase across the globe due to recent changes in prescription guidelines. For example, half the US population over 40 is now eligible for these drugs, whether they have high serum cholesterol or not. With such development in policy comes a stronger need for understanding statins' myriad of effects.

View Article and Find Full Text PDF

Atrial remodeling due to elevated arterial pressure predisposes the heart to atrial fibrillation (AF). Although abnormal sarcoplasmic reticulum (SR) function has been associated with AF, there is little information on the effects of elevated afterload on atrial Ca2+-handling. We investigated the effects of ascending aortic banding (AoB) on Ca2+-handling in rat isolated atrial myocytes in comparison to age-matched sham-operated animals (Sham).

View Article and Find Full Text PDF

Ca(2+) release from the Golgi apparatus regulates key functions of the organelle, including vesicle trafficking. We found that the Golgi apparatus was the source of prolonged Ca(2+) release events that originated near the nuclei of primary cardiomyocytes. Golgi Ca(2+) release was unaffected by depletion of sarcoplasmic reticulum Ca(2+), and disruption of the Golgi apparatus abolished Golgi Ca(2+) release without affecting sarcoplasmic reticulum function, suggesting functional and spatial independence of Golgi and sarcoplasmic reticulum Ca(2+) stores.

View Article and Find Full Text PDF

Increased physical activity is recommended for the general population and for patients with many diseases because of its health benefits but can be contraindicated if it is thought to be a risk for serious cardiovascular events. One such condition is pulmonary artery hypertension (PAH). PAH and right ventricular failure was induced in rats by a single injection of monocrotaline (MCT).

View Article and Find Full Text PDF

The lipid raft concept proposes that membrane environments enriched in cholesterol and sphingolipids cluster certain proteins and form platforms to integrate cell signaling. In cardiac muscle, caveolae concentrate signaling molecules and ion transporters, and play a vital role in adrenergic regulation of excitation-contraction coupling, and consequently cardiac contractility. Proteomic analysis of cardiac caveolae is hampered by the presence of contaminants that have sometimes, erroneously, been proposed to be resident in these domains.

View Article and Find Full Text PDF

The cardiac phosphoprotein phospholemman (PLM) regulates the cardiac sodium pump, activating the pump when phosphorylated and inhibiting it when palmitoylated. Protein palmitoylation, the reversible attachment of a 16 carbon fatty acid to a cysteine thiol, is catalyzed by the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases. The cell surface palmitoyl acyltransferase DHHC5 regulates a growing number of cellular processes, but relatively few DHHC5 substrates have been identified to date.

View Article and Find Full Text PDF

The number of people taking statins is increasing across the globe, highlighting the importance of fully understanding statins' effects on the cardiovascular system. The beneficial impact of statins extends well beyond regression of atherosclerosis to include direct effects on tissues of the cardiovascular system ('pleiotropic effects'). Pleiotropic effects on the cardiac myocyte are often overlooked.

View Article and Find Full Text PDF

Researchers in biomedical sciences must continually re-evaluate their investment in experiments using laboratory animals. Our group is interested in various signalling pathways that underlie physiological and pathophysiological functioning of the mammalian heart. Two important resources for this type of work are isolated cardiomyocytes and homogenized or preserved sections of whole myocardium.

View Article and Find Full Text PDF

Background: Phospholemman regulates the plasmalemmal sodium pump in excitable tissues.

Results: In cardiac muscle, a subpopulation of phospholemman with a unique phosphorylation signature associates with other phospholemman molecules but not with the pump.

Conclusion: Phospholemman oligomers exist in cardiac muscle.

View Article and Find Full Text PDF

Compartmentation of signalling allows multiple stimuli to achieve diverse cellular responses with only a limited pool of second messengers. This spatial control of signalling is achieved, in part, by cellular structures which bring together elements of a particular cascade. One such structure is the caveola, a flask-shaped lipid raft.

View Article and Find Full Text PDF

Inotropy and lusitropy in the ventricular myocyte can be efficiently induced by activation of β1-, but not β2-, adrenoceptors (ARs). Compartmentation of β2-AR-derived cAMP-dependent signalling underlies this functional discrepancy. Here we investigate the mechanism by which caveolae (specialised sarcolemmal invaginations rich in cholesterol and caveolin-3) contribute to compartmentation in the adult rat ventricular myocyte.

View Article and Find Full Text PDF

β(1)-Adrenergic receptors (β(1)ARs) and E-type prostaglandin receptors (EPRs) both produce compartmentalized cAMP responses in cardiac myocytes. The role of cholesterol-dependent lipid rafts in producing these compartmentalized responses was investigated in adult rat ventricular myocytes. β(1)ARs were found in lipid raft and non-lipid raft containing membrane fractions, while EPRs were only found in non-lipid raft fractions.

View Article and Find Full Text PDF

In malignant hyperthermia (MH), mutations in RyR1 underlie direct activation of the channel by volatile anesthetics, leading to muscle contracture and a life-threatening increase in core body temperature. The aim of the present study was to establish whether the associated depletion of sarcoplasmic reticulum (SR) Ca(2+) triggers sarcolemmal Ca(2+) influx via store-operated Ca(2+) entry (SOCE). Samples of vastus medialis muscle were obtained from patients undergoing assessment for MH susceptibility using the in vitro contracture test.

View Article and Find Full Text PDF

Background: Many ion channels are preferentially located in caveolae where compartmentalisation/scaffolding with signal transduction components regulates their activity. Channels that are mechanosensitive may be additionally dependent on caveolar control of the mechanical state of the membrane. Here we test which mechanism underlies caveolar-regulation of the mechanosensitive I(Cl,swell) channel in the adult cardiac myocyte.

View Article and Find Full Text PDF

Cyclic AMP exhibits local (sarcolemmal) and global (cytosolic) patterns of signalling, allowing receptor-specific signals to be generated by a single second messenger. Here we determine whether caveolae, invaginated lipid rafts, are responsible for confining the beta(2) adrenoceptor (AR) cAMP signal to the sarcolemmal compartment. Myocytes were treated with the cholesterol-depleting agent methyl-beta-cyclodextrin (M beta C) to disrupt caveolae.

View Article and Find Full Text PDF

Cardiac microtubule stability is increased in the streptozotocin (STZ) model of type 1 diabetes. Here, we investigate the reason for increased microtubule stability, and the functional consequences of stable microtubule disruption. Ventricular myocytes were isolated from rats at 8-12 weeks after injection of STZ.

View Article and Find Full Text PDF

During vertebrate evolution there has been a shift in the way in which the heart varies cardiac output (the product of heart rate and stroke volume). While mammals, birds, and amphibians increase cardiac output through large increases in heart rate and only modest increases (approximately 30%) in stroke volume, fish and some reptiles use modest increases in heart rate and very large increases in stroke volume (up to 300%). The cellular mechanisms underlying these fundamentally different approaches to cardiac output modulation are unknown.

View Article and Find Full Text PDF