High-density lipoproteins (HDLs) facilitate reverse cholesterol transport, a process in which HDL removes cholesterol from circulation and carries it to the liver for biliary excretion. Reverse cholesterol transport is also facilitated by HDL's high-affinity receptor, scavenger receptor-BI (SR-BI), by mechanisms that are not fully understood. To improve our understanding of SR-BI function, we previously solved the NMR (nuclear magnetic resonance) structure of a peptide encompassing amino acids 405-475 of SR-BI.
View Article and Find Full Text PDFNitric oxide is produced at micromolar levels by pancreatic β-cells during exposure to proinflammatory cytokines. While classically viewed as damaging, nitric oxide also activates pathways that promote β-cell survival. We have shown that nitric oxide, in a cell type-selective manner, inhibits the DNA damage response (DDR) and, in doing so, protects β-cells from DNA damage-induced apoptosis.
View Article and Find Full Text PDFThe interaction of high-density lipoprotein (HDL) with its receptor, scavenger receptor BI (SR-BI), is critical for lowering plasma cholesterol levels and reducing the risk for cardiovascular disease. The HDL/SR-BI complex facilitates delivery of cholesterol into cells and is likely mediated by receptor dimerization. This work describes the use of nuclear magnetic resonance (NMR) spectroscopy to generate the first high-resolution structure of the C-terminal transmembrane domain of SR-BI.
View Article and Find Full Text PDFUnlabelled: Exchange protein directly activated by cAMP (Epac) and protein kinase A (PKA) are intracellular receptors for cAMP. Although PKA and its downstream effectors have been studied extensively in the context of drug addiction, whether and how Epac regulates cellular and behavioral effects of drugs of abuse remain essentially unknown. Epac is known to regulate AMPA receptor (AMPAR) trafficking.
View Article and Find Full Text PDF