Publications by authors named "Sarah C May"

Type 1 diabetes (T1D) is characterized by the autoimmune destruction of insulin-producing β cells and involves an interplay between β cells and cells of the innate and adaptive immune systems. We investigated the therapeutic potential of targeting 12-lipoxygenase (12-LOX), an enzyme implicated in inflammatory pathways in β cells and macrophages, using a mouse model in which the endogenous mouse Alox15 gene is replaced by the human ALOX12 gene. Our finding demonstrated that VLX-1005, a potent 12-LOX inhibitor, effectively delayed the onset of autoimmune diabetes in human gene replacement non-obese diabetic mice.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers focused on how RNA splicing variations could signal differences in protein forms related to type 1 diabetes (T1D), especially in the context of changes in blood circulation.
  • The study utilized machine learning to analyze RNA sequences from blood samples of both new-onset T1D patients and matched controls, revealing distinct splicing patterns linked to the disease.
  • Results indicated that specific RNA splicing events, particularly those with retained introns, were significantly associated with T1D, suggesting these splicing profiles could help understand disease development and differentiate T1D patients from non-diabetics.
View Article and Find Full Text PDF
Article Synopsis
  • - Type 1 diabetes (T1D) is an autoimmune disease that destroys insulin-producing β cells, and the study explores the role of the enzyme 12-lipoxygenase (12-LOX) in this process.
  • - Researchers tested a 12-LOX inhibitor, VLX-1005, on a mouse model that has a human gene replacement, finding it delays the onset of autoimmune diabetes while reducing immune cell infiltration and enhancing immune suppression.
  • - Further analysis showed that VLX-1005 treatment changed inflammatory pathways, decreasing immune responses and supporting its potential as a therapy for T1D through modulation of the immune environment in the pancreas.
View Article and Find Full Text PDF

Preventing the onset of autoimmune type 1 diabetes (T1D) is feasible through pharmacological interventions that target molecular stress-responsive mechanisms. Cellular stresses, such as nutrient deficiency, viral infection, or unfolded proteins, trigger the integrated stress response (ISR), which curtails protein synthesis by phosphorylating eIF2α. In T1D, maladaptive unfolded protein response (UPR) in insulin-producing β cells renders these cells susceptible to autoimmunity.

View Article and Find Full Text PDF

Preventing the onset of autoimmune type 1 diabetes (T1D) is feasible through pharmacological interventions that target molecular stress-responsive mechanisms. Cellular stresses, such as nutrient deficiency, viral infection, or unfolded proteins, trigger the integrated stress response (ISR), which curtails protein synthesis by phosphorylating eukaryotic translation initiation factor-2α (eIF2α). In T1D, maladaptive unfolded protein response (UPR) in insulin-producing β cells renders these cells susceptible to autoimmunity.

View Article and Find Full Text PDF

Stress and diabetes coexist in a vicious cycle. Different types of stress lead to diabetes, while diabetes itself is a major life stressor. This was the focus of the Chicago Biomedical Consortium's 19 annual symposium, "Stress and Human Health: Diabetes," in November 2022.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is an autoimmune disease leading to dysfunction and loss of insulin-secreting β cells. In β cells, polyamines have been implicated in causing cellular stress and dysfunction. An inhibitor of polyamine biosynthesis, difluoromethylornithine (DFMO), has been shown to delay T1D in mouse models and preserve β-cell function in humans with recent-onset T1D.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is a range of pathologies arising from fat accumulation in the liver in the absence of excess alcohol use or other causes of liver disease. Its complications include cirrhosis and liver failure, hepatocellular carcinoma, and eventual death. NAFLD is the most common cause of liver disease globally and is estimated to affect nearly one-third of individuals in the United States.

View Article and Find Full Text PDF

Investigating the immune attack on β cells is critical to understanding autoimmune diabetes. Here, we present a protocol to isolate immune cells from mouse pancreatic lymph nodes and whole pancreas, followed by mass cytometric analyses. This protocol can be used to analyze subsets of innate and adaptive immune cells that play critical roles in autoimmune diabetes, with as few as 5 × 10 cells.

View Article and Find Full Text PDF

The pathogeneses of the 2 major forms of diabetes, type 1 and type 2, differ with respect to their major molecular insults (loss of immune tolerance and onset of tissue insulin resistance, respectively). However, evidence suggests that dysfunction and/or death of insulin-producing β-cells is common to virtually all forms of diabetes. Although the mechanisms underlying β-cell dysfunction remain incompletely characterized, recent years have witnessed major advances in our understanding of the molecular pathways that contribute to the demise of the β-cell.

View Article and Find Full Text PDF

During reverse cholesterol transport, high-density lipoprotein (HDL) carries excess cholesterol from peripheral cells to the liver for excretion in bile. The first and last steps of this pathway involve the HDL receptor, scavenger receptor BI (SR-BI). While the mechanism of SR-BI-mediated cholesterol transport has not yet been established, it has long been suspected that cholesterol traverses through a hydrophobic tunnel in SR-BI's extracellular domain.

View Article and Find Full Text PDF

Objective: To investigate the role of adipocyte Pcpe2 (procollagen C-endopeptidase enhancer 2) in SR-BI (scavenger receptor class BI)-mediated HDL-C (high-density lipoprotein cholesterol) uptake and contributions to adipose lipid storage.

Approach And Results: Pcpe2, a glycoprotein devoid of intrinsic proteolytic activity, is believed to participate in extracellular protein-protein interactions, supporting SR-BI- mediated HDL-C uptake. In published studies, Pcpe2 deficiency increased the development of atherosclerosis by reducing SR-BI-mediated HDL-C catabolism, but the biological impact of this deficiency on adipocyte SR-BI-mediated HDL-C uptake is unknown.

View Article and Find Full Text PDF

HDL and its primary receptor, scavenger receptor class B type I (SR-BI), work together to promote the clearance of excess plasma cholesterol, thereby protecting against atherosclerosis. Human variants of SR-BI have been identified in patients with high HDL-cholesterol levels, and at least one variant has been linked to cardiovascular disease. Therefore, while often regarded as beneficial, very high levels of HDL-cholesterol may result from impaired cholesterol clearance through SR-BI and contribute to cardiovascular risk.

View Article and Find Full Text PDF