Publications by authors named "Sarah C Hubbard"

Most clinically approved biomarkers of cancer are glycoproteins, and those residing on the cell surface are of particular interest in biotherapeutics. We report a method for selective labeling, affinity enrichment, and identification of cell-surface glycoproteins. PC-3 cells and primary human prostate cancer tissue were treated with peracetylated N-azidoacetylgalactosamine, resulting in metabolic labeling of cell surface glycans with the azidosugar.

View Article and Find Full Text PDF

Hundreds of mammalian nuclear and cytoplasmic proteins are reversibly glycosylated by O-linked β-N-acetylglucosamine (O-GlcNAc) to regulate their function, localization, and stability. Despite its broad functional significance, the dynamic and posttranslational nature of O-GlcNAc signaling makes it challenging to study using traditional molecular and cell biological techniques alone. Here, we report that metabolic cross-talk between the N-acetylgalactosamine salvage and O-GlcNAcylation pathways can be exploited for the tagging and identification of O-GlcNAcylated proteins.

View Article and Find Full Text PDF

Fucosylated glycoproteins are involved in many cell-cell recognition events and are markers of embryonic and malignant tissue. Here we report a method for rapid profiling of fucosylated glycoproteins from human cells using 6-azido fucose as a metabolic label.

View Article and Find Full Text PDF

Sulfate assimilation is a critical component of both primary and secondary metabolism. An essential step in this pathway is the activation of sulfate through adenylation by the enzyme ATP sulfurylase (ATPS), forming adenosine 5'-phosphosulfate (APS). Proteobacterial ATPS overcomes this energetically unfavorable reaction by associating with a regulatory G protein, coupling the energy of GTP hydrolysis to APS formation.

View Article and Find Full Text PDF