Publications by authors named "Sarah C Hobbs"

(3-tert-Butyl-7-(5-methylisoxazol-3-yl)-2-(1-methyl-1H-1,2,4-triazol-5-ylmethoxy)pyrazolo[1,5-d][1,2,4]triazine (1) was recently identified as a functionally selective, inverse agonist at the benzodiazepine site of GABA(A) alpha5 receptors and enhances performance in animal models of cognition. The routes of metabolism of this compound in vivo in rat have been well characterised, the identities of the major metabolites are confirmed by synthesis and their biological profiles were evaluated. An unusual oxidation of the pyrazolo[1,5-d][1,2,4]triazine core to the corresponding pyrazolo[1,5-d][1,2,4]triazin-4(5H)-one scaffold by aldehyde oxidase has been observed.

View Article and Find Full Text PDF

(3-tert-Butyl-7-(5-methylisoxazol-3-yl)-2-(1-methyl-1H-1,2,4-triazol-5-ylmethoxy)pyrazolo[1,5-d][1,2,4]triazine (13) has been identified as a functionally selective, inverse agonist at the benzodiazepine site of GABA(A) alpha5 receptors. 13 is orally bioavailable, readily penetrates the CNS, and enhances performance in animal models of cognition. It does not exhibit the convulsant, proconvulsant, or anxiogenic activity associated with nonselective GABA(A) inverse agonists.

View Article and Find Full Text PDF

In pursuit of a GABA(A) alpha5-subtype-selective inverse agonist to enhance cognition, a series of 6,7-dihydro-2-benzothiophen-4(5H)-ones has been identified as a novel class of GABA(A) receptor ligands. These thiophenes have higher binding affinity for the GABA(A) alpha5 receptor subtype compared to the GABA(A) alpha1, alpha2, and alpha3 subtypes, and several analogues exhibit high GABA(A) alpha5 receptor inverse agonism. 6,6-Dimethyl-3-(2-hydroxyethyl)thio-1-(thiazol-2-yl)-6,7-dihydro-2-benzothiophen-4(5H)-one (43) has been identified as a full inverse agonist at the GABA(A) alpha5 receptor and is functionally selective over the other major GABA(A) receptor subtypes.

View Article and Find Full Text PDF

Nonselective inverse agonists at the benzodiazepine binding site on the GABA-A chloride ion channel enhance cognitive performance in animals but cannot be used in the treatment of cognitive disorders because of anxiogenic and convulsant side effects. We have identified a novel series of GABA-A alpha5 receptor ligands during our search for alpha5 receptor inverse agonists as potential cognition enhancers. In particular, 6,6-dimethyl-3-(2-hydroxyethyl)thio-1-(thiazol-2-yl)-6,7-dihydro-2-benzothiophen-4(5H)-one (26) has been identified as a functionally selective GABA-A alpha5 inverse agonist.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: