The literature on causal effect estimation tends to focus on the population mean estimand, which is less informative as medical treatments are becoming more personalized and there is increasing awareness that subpopulations of individuals may experience a group-specific effect that differs from the population average. In fact, it is possible that there is underlying systematic effect heterogeneity that is obscured by focusing on the population mean estimand. In this context, understanding which covariates contribute to this treatment effect heterogeneity (TEH) and how these covariates determine the differential treatment effect (TE) is an important consideration.
View Article and Find Full Text PDFObjectives: Two common methods used to measure indicators for health programme monitoring and evaluation are the demographic and health surveys (DHS) and lot quality assurance sampling (LQAS); each one has different strengths. We report on both methods when utilised in comparable situations.
Methods: We compared 24 indicators in south-west Uganda, where data for prevalence estimations were collected independently for the two methods in 2011 (LQAS: n = 8876; DHS: n = 1200).