Laryngoscope Investig Otolaryngol
December 2024
Objectives: Recently, our laboratory has discovered a self-innervating population of muscle cells, called motor endplate-expressing cells (MEEs). The cells innately release a wide variety of neurotrophic factors into the microenvironment promoting innervation when used as an injectable treatment. Unlike other stem cells, the therapeutic potential of MEEs is dependent on the cells' ability to maintain phenotypical cell surface proteins in particular motor endplates (MEPs).
View Article and Find Full Text PDFObjective: Partial laryngectomies result in voice, swallowing, and airway impairment for thousands of patients in the United States each year. Treatment options for dynamic restoration of laryngeal function are limited. Thus, there is a need for new reconstructive approaches.
View Article and Find Full Text PDFObjective: Laryngeal cancer resections often require excision of portions of the larynx along with sacrifice of the ipsilateral recurrent laryngeal nerve (RLN). In such cases, there are no reconstructive options that reliably restore laryngeal function, rendering patients with severe functional impairment. To address this unmet clinical need, we extend our evaluation of a 3-implant mucosal, muscle, cartilage reconstruction approach aimed at promoting functional laryngeal restoration in a porcine hemilaryngectomy model with ipsilateral RLN transection.
View Article and Find Full Text PDFIntroduction: Patients with bilateral vocal fold paralysis (BVFP) experience airway obstruction because of loss of abductor function of posterior cricoarytenoid (PCA) muscles. We previously reported that implantation of autologous muscle progenitor (stem) cells into thyroarytenoid muscles during reinnervation resulted in improved adductor function. In this study, that same approach was applied to treating PCA muscles in a canine model of BVFP.
View Article and Find Full Text PDFObjective: To describe how differing injector needles and delivery vehicles impact Autologous Muscle-Derived Cell (AMDC) viability when used for laryngeal injection.
Methods: In this study, adult porcine muscle tissue was harvested and used to create AMDC populations. While controlling cell concentration (1 × 10 cells/ml), AMDCs including Muscle Progenitor Cells (MPCs) or Motor Endplate Expressing Cells (MEEs) were suspended in either phosphate-buffered saline or polymerizable (in-situ scaffold forming) type I oligomeric collagen solution.
The efficacy and longevity of medical implants and devices is largely determined by the host immune response, which extends along a continuum from pro-inflammatory/pro-fibrotic to anti-inflammatory/pro-regenerative. Using a rat subcutaneous implantation model, along with histological and transcriptomics analyses, we characterized the tissue response to a collagen polymeric scaffold fabricated from polymerizable type I oligomeric collagen (Oligomer) in comparison to commercial synthetic and collagen-based products. In contrast to commercial biomaterials, no evidence of an immune-mediated foreign body reaction, fibrosis, or bioresorption was observed with Oligomer scaffolds for beyond 60 days.
View Article and Find Full Text PDFBackground/objectives: While voice-related therapeutic interventions are often researched preclinically in the porcine model, there are no well-established methods to induce porcine glottic phonation. Described approaches, such as training animals to phonate for positive reinforcement are time-consuming and plagued by inherent variability in the type of phonation produced and contamination of background noise. Thus, a reliable method of assessing glottic phonation in the porcine model is needed.
View Article and Find Full Text PDFObjective/hypothesis: There are currently no treatments available that restore dynamic laryngeal function after hemilaryngectomy. We have shown that dynamic function can be restored post hemilaryngectomy in a rat model. Here, we report in a first of its kind, proof of concept study that this previously published technique is scalable to a porcine model.
View Article and Find Full Text PDFObjective: Tissue engineering of the larynx requires a complex, multiple tissue layer design. Additionally, spontaneous reinnervation of the larynx after recurrent laryngeal nerve (RLN) injury is often disorganized, resulting in subpar function. This study investigates use of tissue-engineered cartilage and motor endplate-expressing (MEE) tissue-engineered skeletal muscle implants for laryngeal reconstruction and the promotion of organized reinnervation after RLN injury.
View Article and Find Full Text PDFObjectives/hypothesis: Adipose-derived mesenchymal stem cells (ASCs) are an exciting potential cell source for tissue engineering because cells can be derived from the simple excision of autologous fat. This study introduces a novel approach for tissue-engineering cartilage from ASCs and a customized collagen oligomer solution, and demonstrates that the resultant cartilage can be used for laryngeal cartilage reconstruction in an animal model.
Study Design: Basic science experimental design.
Objective: Muscle progenitor cells (MPCs) can be isolated from muscle samples and grown to a critical mass in culture. They have been shown to survive and integrate when implanted into rat laryngeal muscles. In this study, the ability of MPC implants to enhance adductor function of reinnervated thyroarytenoid muscles was tested in a canine model.
View Article and Find Full Text PDFObjective: There is an unmet need for tissue-engineered three-dimensional (3D) muscle constructs for laryngeal reconstruction. Functional engineered muscle could be used to repair postoncologic or traumatic defects or to medialize the vocal fold in cases of paresis/paralysis. Autologous, organized, engineered muscle that has adequate bulk integrates into host tissue and restores function currently does not exist.
View Article and Find Full Text PDFConformity is thought to be an important force in human evolution because it has the potential to stabilize cultural homogeneity within groups and cultural diversity between groups. However, the effects of such conformity on cultural and biological evolution will depend much on the particular way in which individuals are influenced by the frequency of alternative behavioral options they witness. In a previous study we found that in a natural situation people displayed a tendency to be 'linear-conformist'.
View Article and Find Full Text PDFIn this work, we use the transient time correlation function (TTCF) method to evaluate the response of a fluid confined in a nanopore and subjected to shear. The shear is induced by the movement of the boundaries in opposite directions and is made of moving atoms. The viscous heat generated inside the pore is removed by a thermostat applied exclusively to the atomic walls, so as to leave the dynamics of the fluid purely Newtonian.
View Article and Find Full Text PDFPast research has examined the effects of entertainment narratives on story-related behaviors, but most has focused primarily on dramatic genres rather than comedy. The present study examines how the presence or absence of pregnancy-related humor influences viewers' counterarguing, perceived severity, and intentions to engage in unprotected sexual behavior. Results were consistent with expectations in that related humor reduced counterarguing while also trivializing the severity of the consequences of sexual behavior.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a severely debilitating neurodegenerative diseases marked by progressive demyelination and axonal degeneration in the CNS. Although inflammation is the major pathology of MS, the mechanism by which it occurs is not completely clear. The primary symptoms of MS are movement difficulties caused by conduction block resulting from the demyelination of axons.
View Article and Find Full Text PDF