The single most important decision in plant breeding programs is the selection of appropriate crosses. The ideal cross would provide superior predicted progeny performance and enough diversity to maintain genetic gain. The aim of this study was to compare the best crosses predicted using combinations of mid-parent value and variance prediction accounting for linkage disequilibrium (V) or assuming linkage equilibrium (V).
View Article and Find Full Text PDFWheat ( L.) breeding programs test experimental lines in multiple locations over multiple years to get an accurate assessment of grain yield and yield stability. Selections in early generations of the breeding pipeline are based on information from only one or few locations and thus materials are advanced with little knowledge of the genotype × environment interaction (G × E) effects.
View Article and Find Full Text PDFThe International Center for Maize and Wheat Improvement (CIMMYT) leads the Global Wheat Program, whose main objective is to increase the productivity of wheat cropping systems to reduce poverty in developing countries. The priorities of the program are high grain yield, disease resistance, tolerance to abiotic stresses (drought and heat), and desirable quality. The Wheat Chemistry and Quality Laboratory has been continuously evolving to be able to analyze the largest number of samples possible, in the shortest time, at lowest cost, in order to deliver data on diverse quality traits on time to the breeders for making selections for advancement in the breeding pipeline.
View Article and Find Full Text PDFWheat ( L.) cultivars must possess suitable end-use quality for release and consumer acceptability. However, breeding for quality traits is often considered a secondary target relative to yield largely because of amount of seed needed and expense.
View Article and Find Full Text PDF