Publications by authors named "Sarah B Batt"

The Aspergillus niger feruloyl esterase gene (faeA) was cloned into Saccharomyces cerevisiae via a yeast expression vector, resulting in efficient expression and secretion of the enzyme in the medium with a yield of ~2 mg/l. The recombinant enzyme was purified to homogeneity by anion-exchange and hydrophobic interaction chromatography. The specific activity was determined to be 8,200 U/μg (pH 6.

View Article and Find Full Text PDF

A novel exo-glucanase gene (xeg5B) was isolated from a rumenal microbial metagenome, cloned, and expressed in E. coli. The 1548 bp gene coded for a protein of 516 amino acids, which assumed an (a/b)(8) fold typical of glycoside hydrolase (GH) family 5.

View Article and Find Full Text PDF

A novel xyloglucan-specific endo-beta-1,4-glucanase gene (xeg5A) was isolated, cloned, and expressed in Esherichia coli. The enzyme XEG5A consisted of a C-terminal catalytic domain and N-terminal sequence of approximately 90 amino acid residues with unknown function. The catalytic domain assumed an (alpha/beta)(8)-fold typical of glycoside hydrolase (GH) family 5, with the two catalytic residues Glu240 and Glu362 located on opposite sides of the surface groove of the molecule.

View Article and Find Full Text PDF

A novel exo-alpha-1,5-L-arabinanase gene (arn3) was isolated, cloned, and expressed in E. coli. The recombinant enzyme (ARN3) had a pH optimum of 6.

View Article and Find Full Text PDF

The gene encoding Lentinula edodes glucoamylase (GLA) was cloned into Saccharomyces cerevisiae, expressed constitutively and secreted in an active form. The enzyme was purified to homogeneity by (NH4)2SO4 fractionation, anion exchange and affinity chromatography. The protein had a correct N-terminal sequence of WAQSSVIDAYVAS, indicating that the signal peptide was efficiently cleaved.

View Article and Find Full Text PDF

Barley alpha-amylase isozyme 2 was cloned into and constitutively secreted by Saccharomyces cervisiae. The gene coding for the wild-type enzyme was subjected to directed evolution. Libraries of mutants were screened by halo formation on starch agar plates, followed by high-throughput liquid assay using dye-labeled starch as the substrate.

View Article and Find Full Text PDF

High-throughput screening for high-activity barley alpha-amylase mutants expressed in Saccharomyces cerevisiae is hampered by the interference of reducing agents, particularly the glucose used in yeast growth media. The present investigation employed colorimetric and chemiluminescent detection systems that enable direct and rapid screening of activities on raw starch substrate. Active clones could be separated into two groups, based on high total activity or high specific activity.

View Article and Find Full Text PDF

Saccharomyces cerevisiae transformed with plasmids containing the barley alpha-amylase gene was cultured, and enzyme activity and cell density were monitored at various time intervals. Proteins in yeast extract and culture medium were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Western blots of intra- and extracellular proteins were sequentially probed with anti-amylase antibody and anti-rabbit horseradish peroxidase conjugate, followed by chemiluminescent detection.

View Article and Find Full Text PDF