Publications by authors named "Sarah Avila-Barnard"

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a widely used, additive flame retardant that migrates from end-use products, leading to ubiquitous exposure of humans around the world. However, little is known about whether TDCIPP disrupts the physiology of human embryonic cells. Therefore, the objective of this study was to determine whether TDCIPP alters cell viability, cellular metabolism, cytosine methylation, and reactive oxygen species (ROS) levels within human embryonic kidney (HEK293) cells.

View Article and Find Full Text PDF

Triphenyl phosphate (TPHP) - a widely used organophosphate-based flame retardant - blocks cardiac looping during zebrafish development in a concentration-dependent manner, a phenotype that is dependent on disruption of embryonic osmoregulation and pericardial edema formation. However, it's currently unclear whether (1) TPHP-induced effects on osmoregulation are driven by direct TPHP-induced injury to the embryonic epidermis and (2) whether TPHP-induced pericardial edema is reversible or irreversible following cessation of exposure. Therefore, the objectives of this study were to determine whether TPHP-induced pericardial edema is reversible and whether TPHP causes injury to the embryonic epidermis by quantifying the number of DAPI-positive epidermal cells and analyzing the morphology of the yolk sac epithelium using scanning electron microscopy.

View Article and Find Full Text PDF

Pericardial edema is commonly observed in zebrafish embryo-based chemical toxicity screens, and a mechanism underlying edema may be disruption of embryonic osmoregulation. Therefore, the objective of this study was to identify whether triphenyl phosphate (TPHP) - a widely used aryl phosphate ester-based flame retardant - induces pericardial edema via impacts on osmoregulation within embryonic zebrafish. In addition to an increase in TPHP-induced microridges in the embryonic yolk sac epithelium, an increase in ionic strength of exposure media exacerbated TPHP-induced pericardial edema when embryos were exposed from 24 to 72 h post-fertilization (hpf).

View Article and Find Full Text PDF

Cytosine methylation is highly conserved across vertebrate species and, as a key driver of epigenetic programming and chromatin state, plays a critical role in early embryonic development. Enzymatic modifications drive active methylation and demethylation of cytosine into 5-methylcytosine (5-mC) and subsequent oxidation of 5-mC into 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine. Epigenetic reprogramming is a critical period during in utero development, and maternal exposure to chemicals has the potential to reprogram the epigenome within offspring.

View Article and Find Full Text PDF

Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) is an organophosphate ester-based flame retardant widely used within the United States. Within zebrafish, initiation of TDCIPP exposure at 0.75 h post-fertilization (hpf) reliably disrupts cytosine methylation from cleavage (2 hpf) through early-gastrulation (6 hpf).

View Article and Find Full Text PDF

Triphenyl phosphate (TPHP) is an organophosphate ester-based plasticizer and flame retardant. The objective of this study was to identify the potential role of epidermal ionocytes in mediating TPHP-induced pericardial edema within zebrafish embryos. Exposure to TPHP from 24 to 72 h post fertilization (hpf) resulted in a significant increase in pericardial edema and the number of ionocytes at 72 hpf relative to time-matched embryos treated with vehicle.

View Article and Find Full Text PDF