Publications by authors named "Sarah Afaq"

Coronavirus disease 2019 (COVID-19) has overwhelmed the healthcare and economy of the world, with emerging new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) posing an everlasting threat to humanity. While most COVID-19 vaccines provide adequate protective immunological response against the original SARS-CoV-2 variant, there is a pressing need to understand their biological and clinical responses. Recent evidence suggests that some of the new variants of SARS-CoV-2 evade the protection conferred by the existing vaccines, which may impede the ongoing efforts to expedite the vaccination programs worldwide.

View Article and Find Full Text PDF

Background In past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity. Scope of review The applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems. Major conclusions In spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits.

View Article and Find Full Text PDF

The spermatozoa are transcriptionally dormant entities which have been recognized to be an archive of mRNA, coding for a variety of functionally crucial cellular proteins. This significant repository of mRNA is predicted to be associated with early embryogenesis and postfertilization. The mRNA transcripts which are tagged with minisatellites have been involved in the regulation of the gene functions as well as their organization.

View Article and Find Full Text PDF

A comprehensive analysis of methyltransferase (MTase) from Zika virus (ZIKV) is of interest in the development of drugs and biomarkers in the combat and care of ZIKA fever with impulsive joint pain and conjunctivitis. MTase sequence is homologous in several viral species. We analyzed the MTase domain from ZIKV using Bioinformatics tools such as SMART, PROSITE, PFAM, PANTHER, and InterProScan to glean insights on the sequence to structure to function data.

View Article and Find Full Text PDF

The methyltransferase (MTase, a 265 amino acid residues long region at the N-terminal end of the viral nonfunctional supermolecule NS5 domain) is key for viral replication in Japanese Encephalitis Virus (JEV). Sequence to structure to functional information with adequate knowledge on MTase from JEV is currently limited. Therefore, it is of interest to document a report on the comprehensive analysis of predicted proteasomal cleavage data in the methyltransferase domain from JEV.

View Article and Find Full Text PDF

The applications of gene therapy-based treatment of cancers were started almost two decades back as a boon over the chemotherapeutic treatment strategies. Gene therapy helps in correcting the genetic sequences for treatment of cancers, thus also acts like a vaccine to induce the cellular and humoral immunity. However, the cancer vaccines typically suffer from a series of biopharmaceutical challenges due to poor solubility, low systemic availability and lack of targeting ability.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) binds to EGF activating tyrosine phosphorylation through receptor dimerization prompting uncontrolled multiplication. Domain organization, secondary structure combinations in motifs and interactome define such transitory changes responsible for the multi-functionality of human EGFR. We report the predicted phosphorylation sites on Ser, Thr and Tyr residues in addition to 74 auto-phosphorylation sites on Tyr in human EGFR.

View Article and Find Full Text PDF

Crz1p regulates Calcineurin, a serine-threonine-specific protein phosphatase, in Rhizoctonia solani. It has attracted consideration as a novel target of antifungal therapy based on studies in numerous pathogenic fungi, including, Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus. To investigate whether Calcineurin can be a useful target for the treatment of Crz1 protein in R.

View Article and Find Full Text PDF

Garcinol, a dietary factor obtained from , modulates several key cellular signaling pathways as well as the expression of miRNAs. Acquired resistance to standard therapies, such as erlotinib and cisplatin, is a hallmark of non-small cell lung cancer (NSCLC) cells that often involves miRNA-regulated epithelial-to-mesenchymal transition (EMT). We used A549 cells that were exposed to transforming growth factor beta 1 (TGF-β1), resulting in A549M cells with mesenchymal and drug resistant phenotype, and report that garcinol sensitized resistant cells with mesenchymal phenotype to erlotinib as well as cisplatin with significant decrease in their IC values.

View Article and Find Full Text PDF

Objective: To evaluate the effect of allagic acid treatment on the cell viability of human prostate cancer cells.

Methods: Ellagic acid (10-100 mol/L) treatment (48 h) of human prostate carcinoma PC3 cells was found to result in a dose-dependent inhibition of cell growth and apoptosis of PC3 cells as assessed by MTT assay, western blotting, flow cytometry and confocal microscopy.

Results: We observed that ellagic acid treatment of PC3 cells resulted in a dose dependent inhibition of cell growth/cell viability.

View Article and Find Full Text PDF