Publications by authors named "Sarah A Osmani"

Formation of metabolons (macromolecular enzyme complexes) facilitates the channelling of substrates in biosynthetic pathways. Metabolon formation is a dynamic process in which transient structures mediated by weak protein-protein interactions are formed. In Sorghum, the cyanogenic glucoside dhurrin is derived from l-tyrosine in a pathway involving the two cytochromes P450 (CYPs) CYP79A1 and CYP71E1, a glucosyltransferase (UGT85B1), and the redox partner NADPH-dependent cytochrome P450 reductase (CPR).

View Article and Find Full Text PDF

The effect of glucuronosylation on the color stability of anthocyanins was investigated using glucuronosylated anthocyanins isolated from the flower petals of the red daisy (Bellis perennis) or obtained by enzymatic in vitro synthesis using heterologously expressed red daisy glucuronosyltransferase BpUGT94B1. Color stability toward light and heat stress was assessed by monitoring CIELAB color coordinates and stability at pH 7.0 by A(550).

View Article and Find Full Text PDF

Family 1 glycosyltransferases are a group of enzymes known to embrace a large range of different substrates. This study devises a method to enhance the range of substrates even further by combining domains from different glycosyltransferases to gain improved substrate specificity and catalytic efficiency. Chimeric glycosyltransferases were made by combining domains from seven different family 1 glycosyltransferases, UGT71C1, UGT71C2, UGT71E1, UGT85C1, UGT85B1, UGT88B1 and UGT94B1.

View Article and Find Full Text PDF

Plant family 1 UDP-dependent glycosyltransferases (UGTs) catalyze the glycosylation of a plethora of bioactive natural products. In Arabidopsis thaliana, 120 UGT encoding genes have been identified. The crystal-based 3D structures of four plant UGTs have recently been published.

View Article and Find Full Text PDF

The plant UDP-dependent glucosyltransferase (UGT) BpUGT94B1 catalyzes the synthesis of a glucuronosylated cyanidin-derived flavonoid in red daisy (Bellis perennis). The functional properties of BpUGT94B1 were investigated using protein modeling, site-directed mutagenesis, and analysis of the substrate specificity of isolated wild-type and mutated forms of BpUGT94B1. A single unique arginine residue (R25) positioned outside the conserved plant secondary product glycosyltransferase region was identified as crucial for the activity with UDP-glucuronic acid.

View Article and Find Full Text PDF