Recently, we have investigated the sensitivity of an mEGFP-linker-mScarlet-I construct (GE2.3) in response to macromolecular crowding using ensemble time-resolved two-photon (2P) fluorescence measurements [Mersch , 2024, (5), 3927-3940] as a point of reference for developing a single-molecule approach for Förster resonance energy transfer (FRET). Here, we investigate the fluorescence fluctuations, FRET, molecular brightness, and translational diffusion of GE2.
View Article and Find Full Text PDFMacromolecular crowding affects many cellular processes such as diffusion, biochemical reaction kinetics, protein-protein interactions, and protein folding. Mapping the heterogeneous, dynamic crowding in living cells or tissues requires genetically encoded, site-specific, crowding sensors that are compatible with quantitative, noninvasive fluorescence micro-spectroscopy. Here, we carried out time-resolved 2P-fluorescence measurements of a new mEGFP-linker-mScarlet-I macromolecular crowding construct (GE2.
View Article and Find Full Text PDF