Publications by authors named "Sarah A H Hulgan"

The most abundant natural collagens form heterotrimeric triple helices. Synthetic mimics of collagen heterotrimers have been found to fold slowly, even compared to the already slow rates of homotrimeric helices. These prolonged folding rates are not understood.

View Article and Find Full Text PDF

Cation-π interactions play a significant role in the stabilization of globular proteins. However, their role in collagen triple helices is less well understood and they have rarely been used in de novo designed collagen mimetic systems. In this study, we analyze the stabilizing and destabilizing effects in pairwise amino acid interactions between cationic and aromatic residues in both axial and lateral sequential relationships.

View Article and Find Full Text PDF

Collagen mimetic peptides (CMPs) fold into a polyproline type II triple helix, allowing the study of the structure and function (or misfunction) of the collagen family of proteins. This Perspective will focus on recent developments in the use of CMPs toward understanding the structure and controlling the stability of the triple helix. Triple helix assembly is influenced by various factors, including the single amino acid propensity for the triple helix fold, pairwise interactions between these amino acids, and long-range effects observed across the helix, such as bend, twist, and fraying.

View Article and Find Full Text PDF

Robust methods for predicting thermal stabilities of collagen triple helices are critical for understanding natural structure and stability in the collagen family of proteins and also for designing synthetic peptides mimicking these essential proteins. In this work, we determine the relative stability imparted on the collagen triple helix by single amino acids and interactions between amino acid pairs. Using this analysis, we create a comprehensive algorithm, SCEPTTr, for predicting melting temperatures of synthetic triple helices.

View Article and Find Full Text PDF

Collagen mimetic peptides (CMPs) self-assemble into a triple helix reproducing the most fundamental aspect of the collagen structural hierarchy. They are therefore important for both further understanding this complex family of proteins and use in a wide range of biomaterials and biomedical applications. CMP self-assembly is complicated by a number of factors which limit the use of CMPs including their slow rate of folding, relatively poor monomer-trimer equilibrium, and the large number of competing species possible in heterotrimeric helices.

View Article and Find Full Text PDF
Article Synopsis
  • Covalent capture stabilizes supramolecular materials by fixing their three-dimensional structure, allowing them to maintain their assembled form.
  • Lysine-aspartate charge pairs were used to promote the self-assembly of a collagen triple helix, which was then stabilized through amide bond formation using EDC/HOBT activation.
  • This new stability allows the triple helix to maintain its folded structure, enabling its use in various applications that were difficult due to issues with folding equilibria.
View Article and Find Full Text PDF