The relationship between biodiversity and infectious disease, where increased biodiversity leads to decreased disease risk, originated from research in terrestrial disease systems and remains relatively underexplored in marine systems. Understanding the impacts of biodiversity on disease in marine versus terrestrial systems is key to continued marine ecosystem functioning, sustainable aquaculture, and restoration projects. We compare the biodiversity-disease relationship across terrestrial and marine systems, considering biodiversity at six levels: intraspecific host diversity, host microbiomes, interspecific host diversity, biotic vectors and reservoirs, parasite consumers, and parasites.
View Article and Find Full Text PDFObjective: To assess whether the basic reproduction number (R0) of COVID-19 is different across countries and what national-level demographic, social, and environmental factors other than interventions characterize initial vulnerability to the virus.
Methods: We fit logistic growth curves to reported daily case numbers, up to the first epidemic peak, for 58 countries for which 16 explanatory covariates are available. This fitting has been shown to robustly estimate R0 from the specified period.
Rapid evolution of advantageous traits following abrupt environmental change can help populations recover from demographic decline. However, for many introduced diseases affecting longer-lived, slower reproducing hosts, mortality is likely to outpace the acquisition of adaptive de novo mutations. Adaptive alleles must therefore be selected from standing genetic variation, a process that leaves few detectable genomic signatures.
View Article and Find Full Text PDFSince the discovery of Perkinsus marinus as the cause of dermo disease in Crassostrea virginica, salinity and temperature have been identified as the main environmental drivers of parasite prevalence. However, little is known about how these variables affect the movement of the parasite from host to water column. In order to elucidate how environmental factors can influence the abundance of this parasite in the water column, we conducted a series of experiments testing the effects of time of day, temperature and salinity on the release of P.
View Article and Find Full Text PDFThis study is a multi-pronged description of a temperature-induced outbreak of white-band disease (WBD) that occurred in Acropora cervicornis off northern Miami Beach, Florida (USA), from July to October 2014. We describe the ecology of the disease and examine diseased corals using both histopathology and next-generation bacterial 16S gene sequencing, making it possible to better understand the effect this disease has on the coral holobiont, and to address some of the seeming contradictions among previous studies of WBD that employed either a purely histological or molecular approach. The outbreak began in July 2014, as sea surface temperatures reached 29°C, and peaked in mid-September, a month after the sea surface temperature maximum.
View Article and Find Full Text PDFIncreased bacterial diversity on diseased corals can obscure disease etiology and complicate our understanding of pathogenesis. To untangle microbes that may cause white band disease signs from microbes responding to disease, we inoculated healthy Acropora cervicornis corals with an infectious dose from visibly diseased corals. We sampled these dosed corals and healthy controls over time for sequencing of the bacterial 16S region.
View Article and Find Full Text PDFBacterial diseases affecting scleractinian corals pose an enormous threat to the health of coral reefs, yet we still have a limited understanding of the bacteria associated with coral diseases. White band disease is a bacterial disease that affects the two Caribbean acroporid corals, the staghorn coral Acropora cervicornis and the elkhorn coral A. palmate.
View Article and Find Full Text PDF