Publications by authors named "Sarah A Eggleton"

Steroid hormones and their metabolising enzymes have been studied extensively for their potential role in prostate cancer, with more recent interest in the androgen/estrogen inactivating enzyme 17beta-hydroxysteroid dehydrogenase type 4 (HSD17B4). Gene expression profiling showed HSD17B4 to be significantly overexpressed in prostate cancer compared to matched-benign epithelium. We therefore hypothesized that altered HSD17B4 expression may contribute to prostate cancer progression via altered hormone balance.

View Article and Find Full Text PDF

The oncoprotein c-Myc is frequently overexpressed in breast cancer and ectopic expression in breast cancer cell lines attenuates responses to antiestrogen treatment. Here, we review preliminary data aimed at further elucidating a potential role for c-Myc in clinical endocrine resistance in breast cancer. Immunohistochemical and semi-quantitative PCR revealed that c-Myc protein and c-myc mRNA were frequently overexpressed in both ER-positive and ER-negative breast carcinoma.

View Article and Find Full Text PDF

The risk of metastatic progression for prostate cancer patients who undergo radical prostatectomy is best estimated presently based on prostate-specific antigen (PSA) doubling time (PSADT). However, additional markers of risk are needed to identify patients who may benefit from aggressive salvage treatment. A decrease in zinc-alpha2-glycoprotein (AZGP1) mRNA levels in malignant prostate epithelium was previously shown to predict biochemical recurrence, as defined by rising levels of serum PSA after radical prostatectomy.

View Article and Find Full Text PDF

An A to G substitution, rs925013, in the promoter of the prostate-specific antigen gene (PSA) was recently found to be associated with promoter activity and circulating PSA levels. The objective of this study was to test the associations between rs925013 and another A to G substitution, rs266882, in the PSA gene with prostate cancer risk using a population-based case-control study of 821 prostate cancer cases and 734 controls carried out in Perth and Melbourne, Australia. The study focused on young (i.

View Article and Find Full Text PDF

Vitamin D receptor (VDR), a member of the steroid/thyroid hormone nuclear receptor family, is bound by the steroid hormone 1,25-dihydroxyvitamin D3, which is thought to play a role in the etiology and progression of prostate cancer. Polymorphisms in the VDR gene have been associated with prostate cancer risk, although findings are inconclusive. The purpose of this study was to determine if VDR polymorphisms were associated with prostate cancer risk using a large, Australian population-based study of 812 cases and 713 controls frequency-matched by age.

View Article and Find Full Text PDF

The androgen receptor (AR) gene encodes a transcription factor, which mediates androgen action in target tissues, including the prostate. Prostate cancer is androgen dependent, implicating AR in susceptibility to this male condition. Male pattern balding, androgenetic alopecia, has recently been associated with prostate cancer, suggesting shared androgen pathways.

View Article and Find Full Text PDF