Animal space use and spatial overlap can have important consequences for population-level processes such as social interactions and pathogen transmission. Identifying how environmental variability and inter-individual variation affect spatial patterns and in turn influence interactions in animal populations is a priority for the study of animal behaviour and disease ecology. Environmental food availability and macroparasite infection are common drivers of variation, but there are few experimental studies investigating how they affect spatial patterns of wildlife.
View Article and Find Full Text PDF1. Within-host parasite interactions can be mediated by the host and changes in host phenotypes often serve as indicators of the presence or intensity of parasite interactions. 2.
View Article and Find Full Text PDFUnlabelled: Whether, when, and how genetic diversity buffers individuals and populations against infectious disease risk is a critical and open question for understanding wildlife disease and zoonotic disease risk. Several, but not all, studies have found negative relationships between infection and heterozygosity in wildlife. Since they can host multiple zoonotic infections, we sampled a population of wild deer mice (), sequenced their genomes, and examined their fecal samples for coccidia and nematode eggs.
View Article and Find Full Text PDFUncovering drivers of community assembly is a key aspect of learning how biological communities function. Drivers of community similarity can be especially useful in this task as they affect assemblage-level changes that lead to differences in species diversity between habitats. Concepts of β-diversity originally developed for use in free-living communities have been widely applied to parasite communities to gain insight into how infection risk changes with local conditions by comparing parasite communities across abiotic and biotic gradients.
View Article and Find Full Text PDFBackground: Bovine tuberculosis (BTB) is a zoonotic disease of global importance endemic in African buffalo (Syncerus caffer) in sub-Saharan Africa. Zoonotic tuberculosis is a disease of global importance, accounting for over 12,000 deaths annually. Cattle affected with BTB have been proposed as a model for the study of human tuberculosis, more closely resembling the localization and progression of lesions in controlled studies than murine models.
View Article and Find Full Text PDFPathogen interactions arising during coinfection can exacerbate disease severity, for example when the immune response mounted against one pathogen negatively affects defense of another. It is also possible that host immune responses to a pathogen, shaped by historical evolutionary interactions between host and pathogen, may modify host immune defenses in ways that have repercussions for other pathogens. In this case, negative interactions between two pathogens could emerge even in the absence of concurrent infection.
View Article and Find Full Text PDFInt J Parasitol Parasites Wildl
August 2020
Eco-immunological research is encumbered by a lack of basic research in a wild context and by the availability of few non-invasive tools to measure the internal state of wild animals. The recent development of an enzyme-linked immunosorbent assay for measuring immunoglobulins in faecal samples from Soay sheep prompted us to optimize such an assay to measure immunoglobulin A (IgA: an antibody associated with parasitic nematode fecundity) in faecal samples from equids. We measured total IgA in domestic donkeys, wild plains zebras, and wild Grevy's zebras sharing the same landscape in central Kenya over two field seasons.
View Article and Find Full Text PDFOver a billion people on earth are infected with helminth parasites and show remarkable variation in parasite burden and chronicity. These parasite distributions are captured well by classic statistics, such as the negative binomial distribution. But the within-host processes underlying this variation are not well understood.
View Article and Find Full Text PDFResource availability is a key environmental constraint affecting the ecology and evolution of species. Resources have strong effects on disease resistance, but they can also affect the other main parasite defense strategy, tolerance. A small but growing number of animal studies are beginning to investigate the effects of resources on tolerance phenotypes.
View Article and Find Full Text PDFGenetic and environmental factors shape host susceptibility to infection, but how and how rapidly environmental variation might alter the susceptibility of mammalian genotypes remains unknown. Here, we investigate the impacts of seminatural environments upon the nematode susceptibility profiles of inbred C57BL/6 mice. We hypothesized that natural exposure to microbes might directly (e.
View Article and Find Full Text PDFEcological theory suggests that co-infecting parasite species can interact within hosts directly, via host immunity and/or via resource competition. In mice, competition for red blood cells (RBCs) between malaria and bloodsucking helminths can regulate malaria population dynamics, but the importance of RBC competition in human hosts was unknown. We analysed infection density (i.
View Article and Find Full Text PDFResources are a core currency of species interactions and ecology in general (e.g., think of food webs or competition).
View Article and Find Full Text PDFSchistosomes are trematode parasites of global importance, causing infections in millions of people, livestock, and wildlife. Most studies on schistosomiasis, involve human subjects; as such, there is a paucity of longitudinal studies investigating parasite dynamics in the absence of intervention. As a consequence, despite decades of research on schistosomiasis, our understanding of its ecology in natural host populations is centered around how environmental exposure and acquired immunity influence acquisition of parasites, while very little is known about the influence of host physiology, coinfection and clearance in the absence of drug treatment.
View Article and Find Full Text PDFAccurate measures of nematode fecundity can provide important information for investigating parasite life history evolution, transmission potential, and effects on host health. Understanding differences among fecundity assessment protocols and standardizing methods, where possible, will enable comparisons across different studies and host and parasite species and systems. Using the trichostrongyle nematode Cooperia fuelleborni isolated from wild African buffalo (Syncerus caffer), we compared egg recovery and enumeration between two methods for measuring the fecundity of female worms.
View Article and Find Full Text PDFIdentifying drivers of infectious disease patterns and impacts at the broadest scales of organisation is one of the most crucial challenges for modern science, yet answers to many fundamental questions remain elusive. These include what factors commonly facilitate transmission of pathogens to novel host species, what drives variation in immune investment among host species, and more generally what drives global patterns of parasite diversity and distribution? Here we consider how the perspectives and tools of macroecology, a field that investigates patterns and processes at broad spatial, temporal and taxonomic scales, are expanding scientific understanding of global infectious disease ecology. In particular, emerging approaches are providing new insights about scaling properties across all living taxa, and new strategies for mapping pathogen biodiversity and infection risk.
View Article and Find Full Text PDFCommunity assembly is a fundamental process that has long been a central focus in ecology. Extending community assembly theory to communities of co-infecting parasites, we used a gastrointestinal nematode removal experiment in free-ranging African buffalo to examine the community assembly patterns and processes. We first asked whether reassembled communities differ from undisturbed communities by comparing anthelmintic-treated and control hosts.
View Article and Find Full Text PDFMost animals are concurrently infected with multiple parasite species and live in environments with fluctuating resource availability. Resource limitation can influence host immune responses and the degree of competition between co-infecting parasites, yet its effects on individual health and pathogen transmission have not been studied for co-infected hosts. To test how resource limitation affects immune trade-offs and co-infection outcomes, we conducted a factorial experiment using laboratory mice.
View Article and Find Full Text PDFMost hosts are concurrently or sequentially infected with multiple parasites; thus, fully understanding interactions between individual parasite species and their hosts depends on accurate characterization of the parasite community. For parasitic nematodes, noninvasive methods for obtaining quantitative, species-specific infection data in wildlife are often unreliable. Consequently, characterization of gastrointestinal nematode communities of wild hosts has largely relied on lethal sampling to isolate and enumerate adult worms directly from the tissues of dead hosts.
View Article and Find Full Text PDFInt J Parasitol Parasites Wildl
December 2012
Most animals are concurrently infected with multiple parasites, and interactions among these parasites may influence both disease dynamics and host fitness. However, the sublethal costs of parasite infections are difficult to measure and the effects of concomitant infections with multiple parasite species on individual physiology and fitness are poorly described for wild hosts. To understand the direct and indirect physiological costs of co-infection, we investigated the relationships among gastrointestinal parasite richness, species identity, and abundance and host hematological parameters, body condition, and investment in lymphocyte defenses.
View Article and Find Full Text PDFMaternal transfer of environmental contaminants is a disadvantageous parental effect which can have long-lasting implications for offspring fitness. We investigated the effects of mercury (Hg) on the reproductive success of female amphibians and the subsequent effects of maternal transfer on the development of their offspring. American toads (Bufo americanus) maternally transferred Hg to their eggs, and there was a negative relationship between Hg concentrations and the percentage of viable hatchlings produced in clutches.
View Article and Find Full Text PDFWe investigated the effects of embryonic exposure to the widely used organophosphate malathion (15-600 micro/L) on the early development and latent susceptibility of pickerel frog (Rana palustris) tadpoles to the trematode parasite Echinostoma trivolvis. The latent effects of contaminant exposure are rarely examined but could have important implications for individual survival and population viability. Malathion decreased hatching success by 6.
View Article and Find Full Text PDFArch Environ Contam Toxicol
January 2009
Amphibian populations around the world are facing threats that include disease and pollution. Although the effect of environmental contaminants on susceptibility to infection has been demonstrated for several amphibian species, to our knowledge, the opposite interaction, infection status affecting contaminant susceptibility, has not been studied. We conducted standard 48-h toxicity tests to compare susceptibility to malathion, a widely used organophosphate insecticide, of uninfected pickerel frog (Rana palustris) tadpoles and tadpoles infected with two levels (10 or 30 cercariae) of the trematode Echinostoma trivolvis.
View Article and Find Full Text PDF