Publications by authors named "Sarah A Brendle"

We used our mouse papillomavirus (MmuPV1) model to test the hypothesis that two primary psychoactive ingredients of marijuana, Δ-tetrahydrocannabinol (THC) and cannabidiol (CBD), promote papillomavirus persistence in the oral mucosa of infected mice. We conducted intraperitoneal (ip) injections of a moderate dose (3 mg/kg) of either CBD and/or THC in both male and female athymic nude mice and followed the mice up to 20 weeks post-infection. These doses are comparable to what is estimated for human conventional cannabis consumption.

View Article and Find Full Text PDF

Unlabelled: A substantial percentage of the population remains at risk for cervical cancer due to pre-existing human papillomavirus (HPV) infections, despite prophylactic vaccines. Early diagnosis and treatment are crucial for better disease outcomes. The development of new treatments heavily relies on suitable preclinical model systems.

View Article and Find Full Text PDF

Human papillomavirus (HPV)-induced oropharyngeal cancer now exceeds HPV-induced cervical cancer, with a noticeable sex bias. Although it is well established that women have a more proficient immune system, it remains unclear whether immune control of oral papillomavirus infections differs between sexes. In the current study, we use genetically modified mice to target CCR2 and Stat1 pathways, with the aim of investigating the role of both innate and adaptive immune responses in clearing oral papillomavirus, using our established papillomavirus (MmuPV1) infection model.

View Article and Find Full Text PDF

We have established a mouse papillomavirus (MmuPV1) model that induces both cutaneous and mucosal infections and cancers. In the current study, we use this model to test our hypothesis that passive immunization using a single neutralizing monoclonal antibody can protect both cutaneous and mucosal sites at different time points after viral inoculation. We conducted a series of experiments involving the administration of either a neutralizing monoclonal antibody, MPV.

View Article and Find Full Text PDF

Contraceptives such as Depo-medroxyprogesterone (DMPA) are used by an estimated 34 million women worldwide. DMPA has been associated with increased risk of several viral infections including Herpes simplex virus-2 (HSV-2) and Human immunodeficiency virus (HIV). In the current study, we used the mouse papillomavirus (MmuPV1) anogenital infection model to test two hypotheses: (1) contraceptives such as DMPA increase the susceptibility of the anogenital tract to viral infection and (2) long-term contraceptive administration induces more advanced disease at the anogenital tract.

View Article and Find Full Text PDF

HPV infections in the oral cavity that progress to cancer are on the increase in the USA. Model systems to study co-factors for progression of these infections are lacking as HPVs are species-restricted and cannot grow in preclinical animal models. We have recently developed a mouse papillomavirus (MmuPV1) oral mucosal infection model that provides opportunities to test, for the first time, the hypothesis that tobacco carcinogens are co-factors that can impact the progression of oral papillomas to squamous cell carcinoma (SCC).

View Article and Find Full Text PDF

Epstein-Barr Virus (EBV) is a γ-herpesvirus which infects over 90% of the adult human population. Most notably, this virus causes infectious mononucleosis but it is also associated with cancers such as Hodgkin and Burkitt lymphoma. EBV is a species-specific virus and has been studied in many animal models, including nonhuman primates, guinea pigs, humanized mice, and tree shrews.

View Article and Find Full Text PDF

Human papillomaviruses (HPV) contribute to most cervical cancers and are considered to be sexually transmitted. However, papillomaviruses are often found in cancers of internal organs, including the stomach, raising the question as to how the viruses gain access to these sites. A possible connection between blood transfusion and HPV-associated disease has not received much attention.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the use of BET bromodomain inhibitors as potential antiviral drugs for treating human papillomavirus (HPV) infections, which can cause various lesions, some of which may be cancerous.
  • BET proteins, especially BRD4, play a significant role in the HPV life cycle and transcription regulation, making them a target for therapeutic intervention.
  • Results show that a specific BET inhibitor, I-BET762, effectively reduced HPV-related gene expression and inhibited wart growth in rabbits, as well as reduced cell viability in HPV-infected cells, suggesting a promising new approach to HPV treatment.
View Article and Find Full Text PDF

Cancers attributable to human papillomavirus (HPV) place a huge burden on the health of both men and women. The current commercial vaccines are genotype specific and provide little therapeutic benefit to patients with existing HPV infections. Identifying the conformational epitopes on the virus capsid supports the development of improved recombinant vaccines to maximize long-term protection against multiple types of HPV.

View Article and Find Full Text PDF

Mouse papillomavirus has shown broad tissue tropism in nude mice. Previous studies have tested cutaneous infections in different immunocompromised and immunocompetent mouse strains. In the current study, we examined mucosal infection in several immunocompetent and immunocompromised mouse strains.

View Article and Find Full Text PDF

The currently available nonavalent human papillomavirus (HPV) vaccine exploits the highly antigenic L1 major capsid protein to promote high-titer neutralizing antibodies, but is limited to the HPV types included in the vaccine since the responses are highly type-specific. The limited cross-protection offered by the L1 virus-like particle (VLP) vaccine warrants further investigation into cross-protective L2 epitopes. The L2 proteins are yet to be fully characterized as to their precise placement in the virion.

View Article and Find Full Text PDF

Background: Human papillomaviruses (HPV), the causative agents of anogenital warts, are the most prevalent sexually transmitted infectious agents, and wart treatment poses a persistent challenge. We assessed the safety and efficacy of treating HPV with ranpirnase, an endoribonuclease from the northern leopard frog that has been used extensively in Phase III oncology trials.

Methods: As initial verification of ranpirnase antiviral activity, we assessed its ability to eliminate papillomaviruses in cultured cells.

View Article and Find Full Text PDF

Human papillomavirus (HPV) is a significant health burden and leading cause of virus-induced cancers. The current commercial vaccines are genotype specific and provide little therapeutic benefit to patients with existing HPV infections. Host entry mechanisms represent an excellent target for alternative therapeutics, but HPV receptor use, the details of cell attachment, and host entry are inadequately understood.

View Article and Find Full Text PDF

Unlabelled: The human papillomavirus (HPV) major structural protein L1 composes capsomers that are linked together through interactions mediated by the L1 C terminus to constitute a T=7 icosahedral capsid. H16.U4 is a type-specific monoclonal antibody recognizing a conformation-dependent neutralizing epitope of HPV thought to include the L1 protein C terminus.

View Article and Find Full Text PDF

Vaccination with the minor capsid protein L2, notably the 17-36 neutralizing epitope, induces broadly protective antibodies, although the neutralizing titers attained in serum are substantially lower than for the licensed L1 VLP vaccines. Here we examine the impact of other less reactogenic adjuvants upon the induction of durable neutralizing serum antibody responses and protective immunity after vaccination with HPV16 and HPV31 L2 amino acids 17-36 inserted at positions 587 and 453 of VP3, respectively, for surface display on Adeno-Associated Virus 2-like particles [AAVLP (HPV16/31L2)]. Mice were vaccinated three times subcutaneously with AAVLP (HPV16/31L2) at two week intervals at several doses either alone or formulated with alum, alum and MPL, RIBI adjuvant or Cervarix.

View Article and Find Full Text PDF

Cryo-electron microscopy (cryo-EM) was used to solve the structures of human papillomavirus type 16 (HPV16) complexed with fragments of antibody (Fab) from three different neutralizing monoclonals (mAbs): H16.1A, H16.14J, and H263.

View Article and Find Full Text PDF

Unlabelled: Human papillomavirus 16 (HPV16) is a worldwide health threat and an etiologic agent of cervical cancer. To understand the antigenic properties of HPV16, we pursued a structural study to elucidate HPV capsids and antibody interactions. The cryo-electron microscopy (cryo-EM) structures of a mature HPV16 particle and an altered capsid particle were solved individually and as complexes with fragment of antibody (Fab) from the neutralizing antibody H16.

View Article and Find Full Text PDF

Human papillomaviruses (HPVs) have been shown to bind to Laminin-332 (Ln-332) on the extracellular matrix (ECM) secreted by human keratinocytes. The assay described here is an important tool to study HPV receptor binding to the ECM. The assay can also be modified to study the receptors required for HPV infection and for binding to tissues.

View Article and Find Full Text PDF

Human papillomaviruses (HPVs) are associated with benign lesions known as warts and several cancer types including cancer of the cervix, penis, anus and oral cavity. HPVs are classified by their oncogenic potential and are divided into high-risk oncogenic HPVs and low-risk HPVs. Tissue tropism is used as another means of classifying the virus, and HPVs are divided into types that infect mucosal or cutaneous tissues.

View Article and Find Full Text PDF

Human papillomavirus (HPV) 58 is a high-risk HPV type associated with progression to invasive genital carcinomas. We developed six monoclonal antibodies (mAbs) against HPV58 L1 virus-like particles that bind conformational epitopes on HPV58. The hybridoma cell lines were adapted to serum- and animal component-free conditions and the mAb supernatants were affinity-purified.

View Article and Find Full Text PDF

The focus of this research was to compare the binding profiles of human papillomavirus (HPV) 11, 16, 18 and 45 virus-like particles (VLPs) to HaCaT cells and to the extracellular matrix (ECM) secreted by these cells. All four HPV types tested bind to a component(s) of the ECM. HPV11 VLP binding is blocked when the ECM is pretreated with an anti-laminin 5 (LN5) polyclonal antibody.

View Article and Find Full Text PDF